

	Cod. Validacion: BNCX/PSTAQWMARTKAN/OCM/WASPRZ23 Varificacion Documento ifmado electrónicamente desde la plataforma estrubitos G
--	--

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 1/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/vei	rificarFirma

	OBJETO DEL DOCUMENTO	
2.	ESTUDIO HIDROLÓGICO	3
	2.1. PROCEDIMIENTO A UTILIZAR EN LA ZONA DE ESTUDIO	4
	2.2. PLUVIOMETRÍA	4
	2.3. CARACTERÍSTICAS DE LA CUENCA	5
	2.3.1. Descripción general	5
	2.3.2. Características Topográficas	5
	2.3.3. Tiempo de concentración	
	2.4. INTENSIDAD DE PRECIPITACIÓN	
	2.5. COEFICIENTE DE ESCORRENTÍA	
	2.6. CAUDAL DE ESCORRENTÍA DE LA SITUACIÓN ACTUAL	
	2.7. CAUDAL DE ESCORRENTÍA DE LA SITUACIÓN FUTURA	
	2.7.1. Objeto	11
	2.7.2. Determinación de caudales	11
3.	ESTUDIO HIDRÁULICO	13
	3.1. OBJETO	13
	3.2. CAUDALES CIRCULANTES	13
	3.3. CÁLCULOS HIDRÁULICOS	14
	3.3.1. Metodología de cálculo	14
	3.3.2 El modelo HEC-RAS: Bases de funcionamiento y características principales.	14
	3.3.3. Cálculo del perfil de la lámina de agua	19
	3.4. DELIMITACIÓN DE LAS ZONAS DE INUNDACIÓN	
	3.4.1. Situación actual	23
	3.4.2. Situación futura	24
4.	AFECCIONES AL PLANEAMIENTO	25
	CONCLUSIÓN	

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 2/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/vei	rificarFirma

1. OBJETO DEL DOCUMENTO

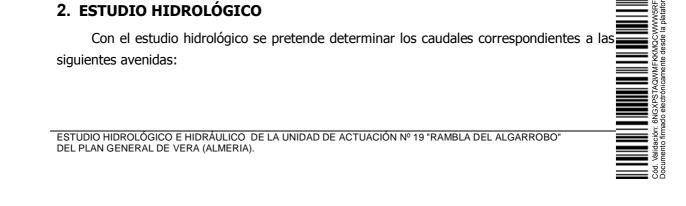
APROBADO DEFINITIVAMENTE

Delegación Territorial de Fomento, Articulación del Territorio v Vivienda

2 FEBRERO 2023

Se redacta el presente documento con el fin de analizar las afecciones que la futura implantación de la unidad de actuación nº 19 "RAMBLA DEL ALGARROBO" incluida en el Plan General de Vera (Almería) produce sobre la rambla del Algarrobo en cuya zona de influencia se plantea.

Por tanto, los objetivos de este documento se pueden concretar en los siguientes:


- Definir la zona inundable de la rambla del Algarrobo para la avenida de periodo de retorno de 100 años, antes y después del desarrollo de la urbanización.
- Definir la zona inundable de la rambla del Algarrobo para la avenida de periodo de retorno de 500 años, antes y después del desarrollo de la urbanización.

La unidad de actuación nº 19 "Rambla del Algarrobo" se ubica contigua al Núcleo Urbano de Vera por el límite Oriental (al Norte del Campo de Fútbol de las Viñas y de la Plaza de Toros) y resulta colindante por el Norte con la Rambla del Algarrobo, por el Este con la Carretera de Circunvalación A-1.200 y por el Sur con el Camino Viejo de Garrucha. Los terrenos disponen de una superficie de 3,1 Has.

Su localización espacial, por tanto, se constituye totalmente idónea para conformar una pequeña "ampliación – Ensanche" de Vera, a incorporar a su Plan General como una Unidad de Actuación Urbanizadora ubicada en el Suelo Urbano No Consolidado del Municipio.

La peculiaridad de su emplazamiento, delimitado en la mayor parte de su perímetro por viarios urbanos existentes y algunos de ellos establecidos dentro del Sistema General Viario por el PGOU, como son el SGVS-5/A-1.200 por el límite Este, el SGVM-4 Camino Viejo de Garrucha, el SGVM-3 que es continuación de la Calle Virgen de las Huertas y que atraviesa el ámbito de la U.A., o la Avenida de la Palmera por el límite Oeste, le confieren el carácter de Suelo Urbano No Consolidado.

Estos viarios, dotados de las infraestructuras propias del suelo urbano, forman parte de la culminación del tejido urbano en esa zona del Municipio, abasteciendo la trama urbana y posibilitando también el abastecimiento de los servicios urbanos necesarios en la nueva Ordenación Urbanística.

 Avenidas extraordinarias previsibles para 100 y 500 años de período de retorno con objeto de delimitar las zonas inundables por dichas avenidas, antes y después del desarrollo de la unidad de actuación.

2.1. PROCEDIMIENTO A UTILIZAR EN LA ZONA DE ESTUDIO

El estudio hidrológico se va a fundamentar en la utilización de métodos hidrometeorológicos.

Puesto que las características de la cuenca de estudio responden a aquellas en las que es válido el método racional, la metodología de cálculo de caudales de avenida que se emplea a continuación es la recogida en la Instrucción de Carreteras 5.2-IC "Drenaje Superficial", basada en dicho método.

El caudal Q en el punto de desagüe de la cuenca se obtiene mediante la fórmula:

$$Q = \frac{C * I * A * K}{3.6}$$

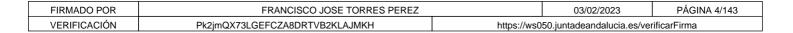
en la que:

APROBADO DEFINITIVAMENTE

C = coeficiente medio de escorrentía de la cuenca vertiente correspondiente al periodo de retorno considerado.

I = intensidad media de precipitación correspondiente al período de retorno considerado y a un intervalo igual al tiempo de concentración.

A = superficie de la cuenca vertiente considerada.


K = Coeficiente de uniformidad temporal. Se calcula a partir del tiempo de concentración mediante la siguiente fórmula:

$$K= 1+ \frac{T_c^{1.25}}{T_c^{1.25} + 14}$$

2.2. PLUVIOMETRÍA

El estudio pluviométrico se realiza considerando la información obtenida de la publicación "Máximas lluvias diarias en la España Peninsular", del Ministerio de Fomento, de la que se puede deducir la precipitación máxima diaria.

Para la zona de estudio se deduce una precipitación máxima diaria anual de P = 56 mm y un coeficiente de variación de Cv = 0,52.

Para poder obtener las precipitaciones previsibles para diferentes períodos de retorno se hace preciso realizar un ajuste estadístico mediante una distribución de tipo extremal como la SQRT.

Para ello es necesario conocer los cuantiles Y_t de la mencionada Ley extremal, también denominados Factores de Ampliación K_T que proporciona la publicación antes mencionada "Máximas Iluvias diarias en la España Peninsular".

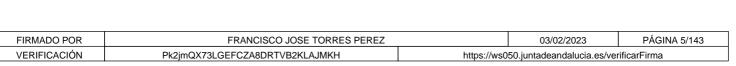
Una vez conocidos los factores de ampliación en función del coeficiente de variación de la zona de estudio se pueden deducir las precipitaciones previsibles para distintos períodos de retorno multiplicando la precipitación máxima diaria por el factor correspondiente.

De esta forma se deducen las precipitaciones siguientes para cada período de retorno:

T = 2 años	Yt = 0.881	P = 45.6 mm
T = 5 años	Yt = 1.308	P = 67.7 mm
T = 10 años	Yt = 1.640	P = 84.9 mm
T = 25 años	Yt = 2.098	P = 108.6 mm
T = 50 años	Yt = 2.464	P = 127.6 mm
T = 100 años	Yt = 2.861	P = 148.1 mm
T = 200 años	Yt = 3.281	P = 169.9 mm
T = 500 años	Yt = 3.860	P = 199.8 mm

El mapa correspondiente a la zona de estudio del que se obtienen los valores de P y Cv así como la tabla resumen de los cuantiles o Factores de Ampliación, KT, correspondientes a cada período de retorno, T, y para distintos coeficientes de variación, Cv, se encuentran recogidos en los apéndices correspondientes.

2.3. CARACTERÍSTICAS DE LA CUENCA


2.3.1. Descripción general

La rambla del Algorrobo, Algarrobina o Cañada de Julián discurre por el norte del núcleo urbano de Vera, atravesando su término municipal hasta du desembocadura en el río Antas.

La rambla, en el tramo que nos ocupa, recoge las aguas del municipio de Vera y la escorrentía de la carretera que circunvala el municipio de Vera.

2.3.2. Características Topográficas

Las características topográficas y geométricas de la cuenca de la rambla del Algarrobo se han deducido de la Cartografía 1:1.000 obtenida del Instituto de Estadística y Cartografía

deAndalucía http://www.juntadeandalucia.es/institutodeestadisticaycartografia/lineav2/web/. Dicha cartografía se ha completado con visitas a campo.

Se ha considerado un punto de control coincidente con el cruce de la rambla bajo la carretera de circunvalación de Vera.

Las características del punto de control:

• Superficie de la cuenca 10,201 Km²

• Longitud del cauce principal 8,321 Km

• Desnivel máximo 125 m

• Pendiente media 0,015 m/m

2.3.3. Tiempo de concentración

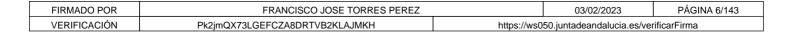
Para determinar el tiempo de concentración de una cuenca de las características que nos ocupa se considera válida la fórmula de Témez expresada a continuación:

$$T_c = 0.3*(\frac{L}{J^{1/4}})^{0.76}$$

En la que L representa la longitud del cauce principal (en Km) y J es la pendiente media del cauce (en m/m).

En el caso de la rambla del Algarrobo, con una longitud del cauce principal de 8,321 Km y una pendiente media de 0,015 m/m, se obtiene, mediante la aplicación de la expresión anterior, un tiempo de concentración de 2,08 horas en el punto de control.

El método hidrometeorológico que se va a emplear resulta apropiado para cuencas pequeñas y en particular para aquellas en las que el tiempo de concentración es inferior a seis horas, que es el caso del presente estudio.


2.4. INTENSIDAD DE PRECIPITACIÓN

La intensidad media de precipitación a emplear será aquella que provoque la avenida de estudio en cada caso.

La intensidad de precipitación a emplear en la estimación de caudales se podrá obtener por medio de la fórmula siguiente:

$$It = Id \left(\frac{I_1}{I_d}\right)^{\frac{28^{01} - t^{01}}{28^{01} - 1}}$$

siendo en la anterior expresión:

Id expresada en mm/h representa la intensidad media diaria de precipitación correspondiente a la lluvia máxima que puede provocar la avenida. Se obtiene a partir de la precipitación máxima diaria, Pd, dividiendo su valor entre las 24 horas del día.

Pd expresada en mm, representa la precipitación total diaria correspondiente a la lluvia que puede provocar la avenida.

I1 representa la intensidad horaria de precipitación correspondiente a la misma lluvia. El valor de la razón I1/Id se podrá tomar de la figura que se acompaña en el apéndice correspondiente. En el presente caso su valor es igual a 10,5.

t representa la duración de la precipitación mencionada. Una hipótesis de cálculo usual es suponer que la duración del aguacero coincide con el tiempo de concentración de la cuenca y suponer que la precipitación se reparte de forma uniforme en este período. Se expresa en horas.

En este caso se considera que la precipitación Pd corresponde a los valores obtenidos en los puntos anteriores, con los que se puede deducir los correspondientes de intensidad Id en mm/hora, resultando los siguientes valores:


• Punto de control.

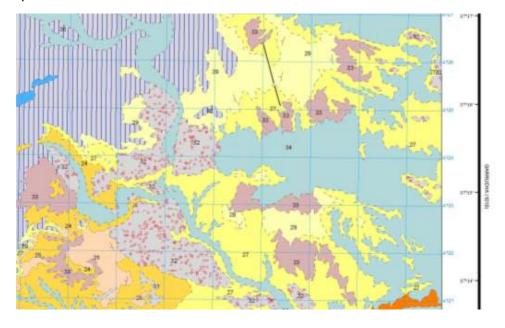
T = 2 años	I = 12,70 mm/h
T = 5 años	I = 18,89 mm/h
T = 10 años	I = 23,64 mm/h
T = 25 años	I = 30,24 mm/h
T = 50 años	I = 35,52 mm/h
T = 100 años	I = 41,24 mm/h
T = 200 años	I = 47,30 mm/h
T = 500 años	I = 55,64 mm/h

2.5. COEFICIENTE DE ESCORRENTÍA

El coeficiente de escorrentía define la proporción de la intensidad de precipitación que discurre por superficie. Depende tanto de la precipitación diaria correspondiente al periodo de retorno considerado como del umbral de escorrentía PO a partir del cual se inicia ésta.

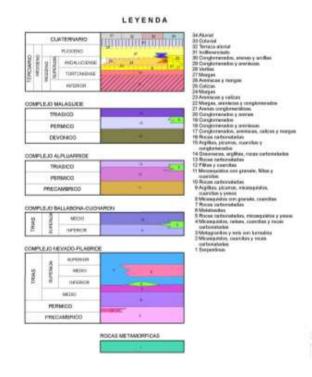
De forma general el valor del coeficiente de escorrentía C se puede obtener a partir de la expresión siguiente:

$$C = \frac{(\frac{P_d}{P_0} - 1) * (\frac{P_d}{P_0} + 23)}{(\frac{P_d}{P_0} + 11)^2}$$


En el caso de cuencas heterogéneas, éstas deberán dividirse en áreas parciales cuyos coeficientes de escorrentía se calcularán por separado en función del valor de P₀ que le corresponda a cada una de ellas. Posteriormente se calculará la media ponderada del coeficiente de escorrentía que será el que se aplique a la totalidad de la superficie de la cuenca.

El umbral de escorrentía P_0 se obtiene a partir de las características hidrológicas y topográficas de la cuenca, del uso de la tierra y el tipo de suelo que la conforma.

En el caso que se analiza se ha considerado que la cuenca de aportación está fundamentalmente cubierta por terreno claro con y sin árboles y pavimento bituminoso. En los planos "Cuencas vertientes" se representan las superficies de la cuenca de la rambla del Algarrobo.


Los materiales que afloran en la cuenca de aportación, como se refleja en la figura adjunta, son del cuaternario del tipo aluvial y margas por lo que corresponde a suelos del tipo B y C.

Validación: 6NGXPSTAQWMFKKMQCWWW5RF umento firmado electrónicamente desde la platafo

APROBADO DEFINITIVAMENTE
Según Acuerdo de la CTOTU
2 FEBRERO 2023

Delegación Terricorial de Fomento,
Anticulación del Terricorio y Vivienda en Almeria
Firma electrónica: EL JEFE DEL SERVICIO DE URBANISMO

Teniendo en cuenta las características descritas y consultando la tabla de estimación inicial del umbral de escorrentía contenida en la Instrucción y que se recoge en el apéndice correspondiente, se obtienen valores de éste comprendidos entre 1 y 24 mm.

Aplicando la expresión del coeficiente de escorrentía antes reflejada se obtiene éste para cada valor de P_0 y calculando su media ponderada se obtienen los siguientes valores para cada periodo de retorno:

T = 2 años	C = 0,154
T = 5 años	C = 0,483
T = 10 años	C = 0,554
T = 25 años	C = 0,629
T = 50 años	C = 0,677
T = 100 años	C = 0,719
T = 200 años	C = 0,755
T = 500 años	C = 0,795

En el apéndice 5: "Cálculo de caudales" se recoge de forma detallada la división en áreas parciales que se realiza de cada cuenca en función del valor de P_0 que se les asigna, el cálculo de cada coeficiente de escorrentía asociado a cada valor de P_0 y la obtención del

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 9/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/vei	rificarFirma

coeficiente de escorrentía medio de aplicación a la totalidad de la superficie de cada cuenca para cada periodo de retorno.

2.6. CAUDAL DE ESCORRENTÍA DE LA SITUACIÓN ACTUAL

Como ya se ha expuesto anteriormente, el método utilizado es el recogido en la Instrucción de Carreteras 5.2-IC "Drenaje Superficial", que emplea una metodología de cálculo de caudales de avenida basada en el método racional.

La ecuación para el cálculo del caudal Q en el punto de desagüe de la cuenca adopta la siguiente expresión:

$$Q = \frac{C * I * A}{3.6} * K$$

en la que:

C = coeficiente medio de escorrentía de la cuenca vertiente correspondiente al periodo de retorno considerado.

I = intensidad media de precipitación correspondiente al período de retorno considerado y a un intervalo igual al tiempo de concentración.

A = superficie de la cuenca vertiente considerada.

K = es el coeficiente de uniformidad temporal que se obtiene con la expresión:

$$K= 1+ \frac{T_c^{1.25}}{T_c^{1.25} + 14}$$

En los apartados anteriores se ha indicado el valor de la superficie de la cuenca y se han calculado los valores tanto de las intensidades medias de precipitación como los valores de los coeficientes de escorrentía medios.

El caudal de escorrentía para cada período de retorno deducido aplicando la expresión anterior se recoge a continuación:

T = 2 años	$Q = 6,373 \text{ m}^3/\text{s}$
T = 5 años	$Q = 29,686 \text{ m}^3/\text{s}$
T = 10 años	$Q = 42,708 \text{ m}^3/\text{s}$
T = 25 años	$Q = 62,065 \text{ m}^3/\text{s}$
T = 50 años	$Q = 78,400 \text{ m}^3/\text{s}$
T = 100 años	$Q = 96,709 \text{ m}^3/\text{s}$
T = 200 años	$Q = 116,547 \text{ m}^3/\text{s}$
T = 500 años	$Q = 144,415 \text{ m}^3/\text{s}$

En el apéndice 5 "Cálculo de caudales" aparece el cálculo detallado de cómo se han obtenido estos caudales.

2.7. CAUDAL DE ESCORRENTÍA DE LA SITUACIÓN FUTURA

2.7.1. Objeto

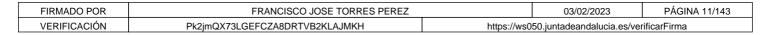
En el presente apartado se pretende determinar los caudales de las avenidas previsibles en la situación futura cuando la cuenca de aportación se vea modificada en la superficie afectada por la futura unidad de actuación nº 19.

Tras el desarrollo de la Unidad de Actuación la cuenca de aportación de la rambla del Algarrobo se verá modificada, en primer lugar, como consecuencia de la variación en el suelo que provoca un incremento del coeficiente de escorrentía superficial. En segundo lugar, se produce una modificación en cuanto a que los terrenos urbanizados dispondrán de sus redes de recogida de aguas pluviales que transportarán los caudales producidos hacia la rambla en forma diferente a la actual.

En el presente apartado se pretende, por tanto, determinar los caudales previsibles en el tramo de la rambla que discurre por la urbanización una vez desarrollada. Se adoptarán los correspondientes a lluvias extraordinarias y en concreto para 500 años de período de retorno.

2.7.2. Determinación de caudales

Para la obtención de los caudales de escorrentía correspondientes a la situación futura todos los cálculos realizados en los apartados anteriores son válidos excepto los de los coeficientes de escorrentía.


Esto es así debido a que ciertas características de la cuenca de la rambla del Algarrobo no se ven afectadas por la unidad de actuación no 19. Es el caso de la superficie, la longitud del cauce principal y su pendiente media, por lo que el tiempo de concentración, que depende de estos valores, y la intensidad media de precipitación, que depende del tiempo de concentración, no varían.

Los coeficientes de escorrentía medios correspondientes a cada periodo de retorno considerado sí varían puesto que a la superficie que se ve afectada por la actuación le corresponden nuevos valores de umbral de escorrentía P₀. El nuevo umbral de escorrentía será el correspondiente a zonas pavimentadas y tendrá un valor de 1 mm.

La superficie de la cuenca que no se ve afectada por la actuación presentará los mismos valores de P_0 que en la situación actual, es decir, valores comprendidos entre 1 y 24 mm.

Aplicando la expresión del coeficiente de escorrentía antes reflejada, se obtiene éste para cada valor de P_0 y calculando su media ponderada se obtienen los siguientes valores para cada periodo de retorno:

Coeficientes de Escorrentía obtenidos para la cuenca de la rambla del Algarrobo. Situación Futura

T = 2 años	C = 0,157
T = 5 años	C = 0,484
T = 10 años	C = 0,555
T = 25 años	C = 0,630
T = 50 años	C = 0,678
T = 100 años	C = 0,720
T = 200 años	C = 0,756
T = 500 años	C = 0,796

Una vez obtenidos los coeficientes de escorrentía medios para cada periodo de retorno, se aplica la misma expresión que en el apartado anterior para la obtención de los caudales de escorrentía:

APROBADO DEFINITIVAMENTE

Caudales de Escorrentía obtenidos en el Punto de control de la rambla del Algarrobo. Situación Futura

T = 2 años	$Q = 6.494 \text{ m}^3/\text{s}$
T = 5 años	$Q = 29.801 \text{ m}^3/\text{s}$
T = 10 años	$Q = 42.836 \text{ m}^3/\text{s}$
T = 25 años	$Q = 62.205 \text{ m}^3/\text{s}$
T = 50 años	$Q = 78.545 \text{ m}^3/\text{s}$
T = 100 años	$Q = 96.859 \text{ m}^3/\text{s}$
T = 200 años	$Q = 116.698 \text{ m}^3/\text{s}$
T = 500 años	$Q = 144.567 \text{ m}^3/\text{s}$

En el apéndice nº 5: "Cálculo de caudales" se recoge de forma detallada la división en áreas parciales que se realiza de la cuenca en función del valor de P₀ que se les asigna, el cálculo de cada coeficiente de escorrentía asociado a cada valor de Po y la obtención del coeficiente de escorrentía medio de aplicación a la totalidad de la superficie de la cuenca para cada periodo de retorno.

3. ESTUDIO HIDRÁULICO

3.1. OBJETO

El objeto del estudio hidráulico es conocer la superficie inundable originada por avenidas extraordinarias, en concreto para la avenida de 100 y 500 años, tanto en la situación actual, como después de hacer las obras de urbanización.

La cartografía utilizada se ha obtenido del Instituto de Cartografía y Estadística de Andalucía (http://www.juntadeandalucia.es/institutodeestadisticaycartografia/lineav2/web/) completada con visitas de campo.

3.2. CAUDALES CIRCULANTES

Los caudales circulantes empleados en el cálculo son el resultado del estudio hidrológico presentado en el punto anterior y se recogen a modo de resumen a continuación:

Rambia del Algarrobo

Situación actual

 $T = 100 \text{ años } Q = 96.709 \text{ m}^3/\text{s}$

 $T = 500 \text{ años } Q = 144.415 \text{ m}^3/\text{s}$

Situación futura

APROBADO DEFINITIVAMENTE

2023

 $T = 100 \text{ años } Q = 96.859 \text{ m}^3/\text{s}$

 $T = 500 \text{ años } Q = 144.567 \text{ m}^3/\text{s}$

Como se ha modelizado una longitud de unos 2.230 m, a la hora de realizar los cálculos hidráulicos, se ha considerado que el caudal no es constante en todo el tramo sino que va aumentando hasta alcanzar el valor calculado para el punto de control. Para ello se ha tomado un punto intermedio, P1, y se ha obtenido el caudal aportado por la cuenca en el mismo.

La situación de este punto intermedio considerado es tal que el valor del caudal Q1 calculado coincide en la situación actual y futura, ya que se encuentra localizado en zonas que no se verán afectadas por la unidad de actuación. Los caudales obtenidos y que se emplean en los cálculos hidráulicos realizados son los siguientes:

	SITUACIÓN ACTUAL Y FUTURA	SITUACIÓN ACTUAL	SITUACIÓN FUTURA
	\mathbf{Q}_1	Q pto. control	Q pto. control
T 100	82,60	96,709	96,815
T 500	123,79	144,415	144,567

En el apéndice nº 5 "Cálculo de caudales" se recoge de forma detallada el cálculo de estos caudales intermedios y en los planos "Cuencas vertientes" se representa el punto intermedio en donde se produce el aumento de caudal.

3.3. CÁLCULOS HIDRÁULICOS

3.3.1. Metodología de cálculo

Conocidos los caudales circulantes, se comprueba la capacidad hidráulica de la rambla del Algarrobo mediante el programa HEC- RAS, tanto para la situación actual, como para la situación futura resultante tras la ejecución de la unidad de actuación.

El modelo HEC-RAS ha sido creado por el Cuerpo de Ingenieros Hidráulicos de la Armada de los Estados Unidos (U.S Army Corps of Engineers del Hidrologic Center) teniendo como predecesores los modelos HEC-2 (para flujo permanente en ríos) y HEC-6 (para transporte de sedimentos) creados también por el mismo cuerpo, y calcula en su actual configuración el perfil de la superficie libre en un río o canal en régimen permanente gradualmente variado, según la metodología conocida como paso a paso (step-method).

3.3.2. . El modelo HEC-RAS: Bases de funcionamiento y características principales.

Bases de cálculo

En esencia, el modelo resuelve la ecuación diferencial de primer grado de los perfiles en lámina libre (curvas de remanso):

$$-I = -I_0 + \frac{dy}{dx} + \frac{d}{dx} \left(\frac{Q^2}{2 \cdot g \cdot S^2} \right)$$
$$-I = -I_0 + \frac{dy}{dx} \left(1 - \frac{Q \cdot B}{g \cdot S^3} \right)$$

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 14/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/vei	rificarFirma

https://ws050.juntadeandalucia.es/verificarFirma

copia auténtica de documento electrónico

$$H = y + z + \frac{v^2}{2 \cdot g}$$
$$\frac{dH}{dx} = \frac{dz}{dx} + \frac{d}{dx} \left(y + \frac{v^2}{2 \cdot g} \right)$$

Obteniendo finalmente la ecuación 1:

$$\frac{dy}{dx} = \frac{I_0 - I}{1 - F^2}$$

donde:

H: Energía específica.

Q: Caudal a través de la sección, el cual se supone constante.

S: Sección mojada.

B: Ancho de la sección.

F: Número de Froude.

F<1 el flujo es lento

F= 1 el flujo es critico

F>1 el flujo es rápido

Io: Pendiente del terreno.

I: Pendiente de fricción representativa (variación unitaria de energía)

dy/dx: Variación del calado en la dirección longitudinal del flujo.

Esta ecuación diferencial de 1er orden exige una única condición de contorno para poder resolverla.

Para resolver la ecuación 1, el método usa las ecuaciones de conservación de la energía entre las secciones 1 y 2 (ecuación 2), la de Manning y la ecuación 3.

Ecuación 2:

$$y_1 + \frac{\alpha_1 \cdot v_1^2}{2 \cdot g} = y_2 + \frac{\alpha_2 \cdot v_2^2}{2 \cdot g} + \Delta H_{1 \to 2}$$

donde:

Y: Calado (m).

ESTUDIO HIDROLÓGICO E HIDRÁULICO DE LA UNIDAD DE ACTUACIÓN № 19 "RAMBLA DEL ALGARROBO" DEL PLAN GENERAL DE VERA (ALMERIA).

Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH

VERIFICACIÓN

V: Velocidad media del agua (m/s).

 α : Coeficiente de velocidad de Coriolis.

 $\Lambda H_{1\rightarrow 2}$: Pérdidas de carga, tanto locales como continuas o de fricción (pendiente motriz).

Ecuación 3:

$$\Delta H_{1\rightarrow2} = I \cdot L + P\acute{e}rdidas = \frac{n^2 \cdot Q^2}{S^2 \cdot R_h^{4/3}} \cdot L + P\acute{e}rdidas = \frac{Q^2}{K^2} \cdot L + C \cdot \left(\frac{\alpha_2 \cdot v_2^2}{2 \cdot g} - \frac{\alpha_1 \cdot v_1^2}{2 \cdot g}\right)$$

donde:

n: Número de Manning, representativo de la fricción.

Rh: Radio Hidráulico de la sección (Rh= Sección mojada/perímetro mojado)

K: Parámetro que caracteriza la sección (es una agrupación de parámetros)

L: Longitud del tramo 1 al 2, que en canales sinuosos se calcula como un promedio de las longitudes según la margen izquierda, derecha y el cauce principal, ponderando según el caudal por cada una de las zonas:

$$L = \frac{Q_{izq} \cdot L_{izq} + Q_{der} \cdot L_{der} + Q_r \cdot L_{der}}{Q}$$

De esta forma el modelo resuelve de forma iterativa la ecuación 1 mediante las ecuaciones 2 y 3, necesitando para ello una única condición de contorno.

Las principales características del modelo son:

Calcula perfiles en lámina libre para flujo gradualmente variado.

Realiza un tratamiento unidimensional del flujo.

Considera la variabilidad de la velocidad a lo largo de una sección transversal. Por ello obtiene la distribución de velocidades en la sección.

Analiza el flujo para todo tipo de regímenes (lento, rápido o mixto). En caso de régimen lento la condición de contorno se impone en la sección de aguas abajo y en caso de régimen rápido se impone en la sección de aguas arriba.

Localiza el resalto hidráulico, aplicando la ecuación de cantidad de movimiento y admite el cálculo a través de un régimen crítico.

Trata el flujo dividido y en uniones.

Analiza el efecto que producen las estructuras inmersas en el cauce del río (puentes o drenajes transversales).

La precisión del cálculo es muy alta, del orden de 1 cm.

Para determinar el calado crítico, el modelo minimiza la expresión de la energía especifica.

El modelo requiere la entrada de dos tipos de datos.

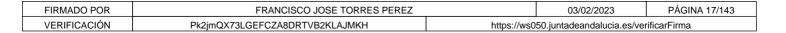
Datos de las características geométricas del cauce o canal.

Geometría de las distintas secciones que se quieran considerar, las cuales se definirán por puntos (desde la margen izquierda a la derecha y vistas desde aguas arriba a aguas abajo) indicando la distancia entre secciones (esta distancia dependerá de la precisión que se quiera conseguir). Las secciones se tomarán perpendicularmente al cauce y se debe indicar no sólo la distancia siguiendo el eje sino también siguiendo los extremos de cada una de las márgenes (muy importante en tramos curvos). En el caso en que una sección sea sensiblemente constante en cuanto a su geometría, no hace falta repetir su definición. Basta con indicar que la geometría de la anterior debe ser usada. Del mismo modo, se pueden elevar las cotas hasta un cierto nivel mínimo. Sobre una sección base se pueden aplicar variaciones, como obstrucciones al flujo, terraplenes, etc.

Datos de las características hidráulicas del flujo.

Tipo de régimen.

Rápido. En este caso el cálculo se realizará desde aguas arriba a aguas abajo.


Lento. En este caso el cálculo se realizará desde aguas abajo a aguas arriba.

Mixto. Siempre y cuando se prevean cambios de régimen.

Calado inicial

Calado crítico.

Calado conocido.

Indicar que se obtendrá una curva de gasto para la sección, que deberá suministrarse. En función del caudal, el modelo calculará sobre dicha curva cuál es el calado que corresponde.

- Caudal. El programa admite la variación de caudal en cada sección de cálculo.
- Coeficiente de fricción o número de Manning. El programa admite valores diferentes dentro de una misma sección.
- Coeficientes de contracción o expansión.

Resultados

Para poder entender correctamente la tabla que aparece en el apéndice 8 se presentan previamente las variables que en ella aparecen:

Reach: Nombre de la subcuenca

River Sta: Número de la sección

Qtotal: Caudal de cálculo

Min Ch El: Cota mínima de la sección

W.S. Elev: Elevación de la superficie libre de la lámina de agua

Crit. W.S.: Elevación de la línea de calados críticos

E.G. Elev: Elevación de la línea de energía

E.G. Slope: Pendiente de la línea de energía

Vel Chnl: Velocidad media Flow Area: Sección mojada

Top Width: Ancho en superficie libre

Froude • Chl: Número de Froude

Una de las variables más interesantes de la tabla es el número de Froude, el cual nos indica si el flujo es rápido (F>1) o lento (F<1).

En el apéndice 6 se muestran las secciones que se han usado para caracterizar geométricamente el cauce a lo largo de toda su traza. Además de la forma de la propia sección, aparecen también representadas las líneas de energía, superficie de la lámina de agua y la cota del calado crítico. Estas líneas son las que se obtienen para el caudal de avenida, el correspondiente al periodo de retorno de estudio.

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 18/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/vei	rificarFirma

3.3.3. Cálculo del perfil de la lámina de agua

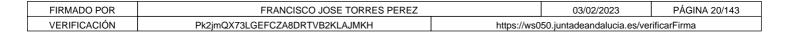
3.3.3.1. PARÁMETROS GEOMÉTRICOS

Se ha analizado una longitud de arroyo de 2.238 m. La geometría del cauce del barranco del Algarrobo se ha definido a partir de 31 secciones transversales obtenidas de la cartografía escala 1:1000 disponible para la zona de la actuación. En el apéndice nº 7: Planos se incluye una planta de las secciones transversales empleadas para el estudio.

En la situación actual se han modelizado cuatro obras de fábrica correspondientes a los siguientes cruces:

• Cruce de la carretera de Águilas con la rambla del Algarrobo (RS39.2). Marco de 3x2.5 m.

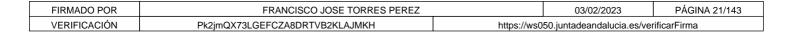
FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 19/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/vei	rificarFirma


 Cruce del camino de Algarrobina con la rambla del Algarrobo (RS28.5). Tres tubos de diámetro 2000 mm.

• Cruce rambla del Algarrobo (RS 24.5): Tres tubos de diámetro 2000 mm.

APROBADO DEFINITIVAMENTE

• Cruce rambla del Algarrobo (RS 15.5): Tres tubos de diámetro 2000 mm.


• Cruce del camino de la Ribina con la rambla del Algarrobo. Se realiza a nivel.

APROBADO DEFINITIVAMENTE

Cruce de la autovía A-1200 con la rambla del Algarrobo (RS4.2).

En la situación futura se han modelizado las mismas obras de fábrica porque la unidad de actuación no prevé ejecutar nuevas obras de fábrica sobre el cauce.

En el apéndice nº 8: Reportaje fotográfico se realiza un inventario de las obras de fábrica incluidas en el estudio hidráulico.

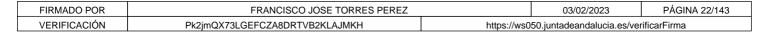
3.3.3.2. CAUDALES CIRCULANTES

Como resumen de los apartados anteriores se recogen los caudales empleados en la modelización, tanto para la situación actual, como para la futura:

	SITUACIÓN ACTUAL Y FUTURA	SITUACIÓN ACTUAL	SITUACIÓN FUTURA
	\mathbf{Q}_1	Q pto. control	Q pto. control
T 100	82,60	96,709	96,859
T 500	123,79	144,415	144,567

3.3.3. PARÁMETROS HIDRÁULICOS

Los coeficientes de rugosidad empleados han sido:


- En el tramo situado aguas arriba del camino de la Ribina, se ha empleado para el lecho y los taludes del cauce n= 0.030. En este tramo el cauce se encuentra con el lecho en tierra y los taludes en mampostería o tierra, como se puede ver en el apéndice nº8: Reportaje Fotográfico.
- Desde el camino de la Ribina hasta el final de la zona estudiada, el cauce se encuentra cubierto por vegetación salvaje por lo que se ha adoptado un valor de n= 0.070. Como en el caso anterior se adjunta justificación en Apéndice nº8: Reportaje Fotográfico.

Las condiciones de contorno que se han considerado para la modelización hidráulica han sido:

- Aguas arriba, se ha adoptado el calado normal, ya que se ha considerado que el flujo se aproxima al uniforme.
- Aguas abajo, se ha adoptado el calado normal, ya que se ha considerado que el flujo se aproxima al uniforme.

Para la modelización hidráulica se ha considerado el régimen hidráulico mixto para prever posibles cambios de régimen.

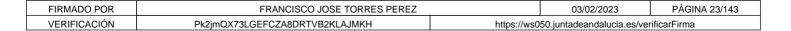
3.4. DELIMITACIÓN DE LAS ZONAS DE INUNDACIÓN

3.4.1. Situación actual

Con los datos descritos anteriormente se han obtenido los resultados que se incluyen en el apéndice 6. La cota de la lámina de agua resultante de la modelización correspondiente a cada avenida se recoge en el cuadro adjunto:

LÁMINA DE AGUA. RAMBLA DEL ALGARROBO. ESTADO ACTUAL

Doco!	Divo- Ct-	Dν	Drofile	O Total	W C Flan
Reach	River Sta	۲ĸ	Profile	Q Total (m3/s)	W.S. Elev (m)
1	42	200	T=100	82.6	102.1
1	42	200	T=500	123.79	102.1
	42		1=300	123.79	104.15
1	41	250	T=100	82.6	102.1
1	41	200	T=500	123.79	104.15
				120.70	101110
1	39.5	325	T=100	82.6	101.31
1	39.5		T=500	123.79	104.15
1	39.2			Bridge	
1	39	350	T=100	82.6	97.02
1	39		T=500	123.79	98.1
				1	
1	38	400		82.6	93.37
1	38		T=500	123.79	93.47
<u> </u>		450	T 400	60.0	20.22
1	37	450	T=100	82.6	93.89
1	37		T=500	123.79	94.01
1	200	E00	T 100	80.0	93.4
1	36	500	T=100	82.6	
- 1	36		T=500	123.79	93.68
1	35	550	T=100	82.6	92.88
1	35	330	T=500	123.79	93.36
	33		1=300	123.78	93.30
1	34	600	T=100	82.6	92.84
1	34	000	T=500	123.79	93.33
				1	00.00
1	32	700	T=100	82.6	92.12
1	32		T=500	123.79	92.47
1	31	750	T=100	82.6	90.17
1	31		T=500	123.79	90.4
1	30	850	T=100	82.6	87.56
1	30		T=500	123.79	88.16
				1	
1	28.5			Culvert	
<u> </u>		050	T 400	00.0	25 =2
1	27	950	T=100	82.6	85.73
1	27		T=500	123.79	86.61
1	25	1050	T=100	82.6	85.71
1	25	1030	T=500	123.79	86.59
	25		1-300	123.79	60.39
1	24.5			Culvert	
	24.0		1	Julion	
1	22	1200	T=100	82.6	79.34
1	22		T=500	123.79	79.78
i i				1	
1	21	1250	T=100	82.6	79.36
1	21		T=500	123.79	79.83
1	20	1300	T=100	82.6	79.36
1	20		T=500	123.79	79.82


APROBADO DEFINITIVAMENTE 2 FEBRERO 2023

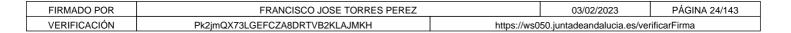
1	19	1350	T=100	82.6	79.36
1	19		T=500	123.79	79.81
·			000	120110	7 0.0 1
1	18	1400	T=100	82.6	79.36
1	18	1700	T=500	123.79	79.82
- '	10		1-300	123.73	79.02
1	17	1450	T=100	82.6	79.36
1	17	1430	T=500		
- !	- 17		1=500	123.79	79.81
1	40	4500	T 400	00.0	70.00
	16	1500	T=100	82.6	79.36
1	16		T=500	123.79	79.82
1	15.5			Culvert	
1	15	1550	T=100	82.6	74.67
1	15		T=500	123.79	75.08
1	14	1600	T=100	82.6	74.13
1	14		T=500	123.79	74.46
1	13	1650	T=100	82.6	72.7
1	13		T=500	123.79	72.87
1	12	1750	T=100	82.6	72.75
1	12		T=500	123.79	73.08
1	11	1700	T=100	82.6	71.64
1	11		T=500	123.79	71.87
1	10.5		T=100	82.6	68.86
1	10.5		T=500	123.79	69.14
1	10	1800	T=100	96.71	69.69
1	10		T=500	144.42	70.12
·			000		70112
1	6	2000	T=100	96.71	67.47
1	6	2000	T=500	144.42	69.68
			1-000	1-1-12	00.00
1	5	2050	T=100	96.71	67.43
1	5	2030	T=500	144.42	69.67
	3		1-300	144.42	03.07
1	15		T=100	96.71	66.64
1	4.5 4.5		T=100	144.42	
- 1	4.5		1=500	144.42	68.98
1	4.0			Dridge	
1	4.2			Bridge	
1		2400	T 100	00.71	05.45
	4	∠100	T=100	96.71	65.45
1	4		T=500	144.42	66.32
		04=0	T 400	22.5	
1	3	2150	T=100	96.71	63.72
1	3		T=500	144.42	64.17
		L			
1	2	2200	T=100	96.71	63.39
1	2		T=500	144.42	63.78
			1	1	
1	1	2238	T=100 T=500	96.71 144.42	62.85 63.2

Reach River Sta PK Profile Q Total

W.S. Elev

Cód. Validación: 6NGXPSTAQWMFKKMQCWWW5RFZ3 | Documento firmado electrónicamente desde la plataforma

3.4.2. Situación futura


APROBADO DEFINITIVAMENTE

Los resultados de la modelización hidráulica una vez realizada la urbanización se incluyen en el apéndice 6. A continuación se resumen las cotas de la lámina de agua para cada una de las avenidas consideradas para el cálculo:

LÁMINA DE AGUA. RAMBLA DEL ALGARROBO. ESTADO FUTURO

Booch	River Sta	DΙ	Drofile	Q Total	W C Floy
Reach	River Sta	PN	Profile	(m3/s)	W.S. Elev (m)
1	42	200	T=100	82.6	102.1
1	42	200	T=500	123.79	104.15
	42		1=300	123.79	104.15
1	41	250	T=100	82.6	102.1
1	41	200	T=500	123.79	
<u> </u>			1-000	120.70	104.10
1	39.5	325	T=100	82.6	101.31
1	39.5		T=500	123.79	104.15
1	39.2			Bridge	
1	39	350	T=100	82.6	97.02
1	39		T=500	123.79	98.1
1	38	400	T=100	82.6	93.37
1	38		T=500	123.79	93.47
1	37	450	T=100	82.6	93.89
1	37		T=500	123.79	94.01
1	36	500	T=100	82.6	93.4
1	36		T=500	123.79	93.68
			T 400	20.0	20.00
1	35	550	T=100	82.6	92.88
1	35		T=500	123.79	93.36
- 1	24	600	T 100	00.0	00.04
1	34 34	600	T=100 T=500	82.6 123.79	92.84 93.33
	34		1=500	123.79	93.33
1	32	700	T=100	82.6	92.12
1	32	700	T=500	123.79	92.12
	52		1=300	123.73	32.47
1	31	750	T=100	82.6	90.17
1	31		T=500	123.79	90.4
	<u> </u>		000	120.10	00
1	30	850	T=100	82.6	87.56
1	30		T=500	123.79	88.16
1	28.5			Culvert	
1	27	950	T=100	82.6	85.73
1	27		T=500	123.79	86.61
1	25	1050	T=100	82.6	85.71
1	25		T=500	123.79	86.59
1	24.5			Culvert	
1	22	1200	T=100	82.6	79.34
1	22		T=500	123.79	79.78
1	21	1250	T=100	82.6	79.36
1	21		T=500	123.79	79.83
1			T=100	82.6	79.36
1	20		T=500	123.79	79.82

-	River Sta		Profile	Q Total	W.S. Elev
1	19	1350	T=100	82.6	79.36
1	19		T=500	123.79	79.81
1	18	1400	T=100	82.6	79.36
1	18		T=500	123.79	79.82
1	17	1450	T=100	82.6	79.36
1	17		T=500	123.79	79.81
1	16	1500	T=100	82.6	79.36
1	16		T=500	123.79	79.82
1	15.5			Culvert	
1	15	1550	T=100	82.6	74.67
1	15		T=500	123.79	75.08
1	14	1600	T=100	82.6	74.13
1	14		T=500	123.79	74.46
1	13	1650	T=100	82.6	72.7
1	13		T=500	123.79	72.87
1	12	1750	T=100	82.6	72.75
1	12		T=500	123.79	73.08
1	11	1700	T=100	82.6	71.64
1	11		T=500	123.79	71.87
1	10.5		T=100	82.6	68.86
1	10.5		T=500	123.79	69.14
1	10	1800	T=100	96.86	69.69
1	10		T=500	144.57	70.13
1	6	2000	T=100	96.86	67.48
1	6		T=500	144.57	69.69
1	5	2050	T=100	96.86	67.44
1	5		T=500	144.57	69.68
1	4.5		T=100	96.86	66.64
1	4.5		T=500	144.57	68.99
1	4.2			Bridge	
1	4	2100	T=100	96.86	65.46
1	4		T=500	144.57	66.32
1	3	2150	T=100	96.86	63.72
1	3		T=500	144.57	64.17
1	2	2200	T=100	96.86	63.39
1	2		T=500	144.57	63.78
	_			-	
1	1	2238	T=100	96.86	62.86
1	1		T=500	144.57	63.2

Como se puede deducir de los cálculos, no existe mucha diferencia entre la mancha de inundación en el estado actual y una vez que se ha realizado la urbanización.

4. AFECCIONES AL PLANEAMIENTO

En el apéndice nº7 se incluye una colección de planos donde queda delimitada la zona de Dominio Público Hidráulico, la zona de servidumbre y la zona de policía delimitada por la Consejería de Agricultura, Pesca y Medioambiente. En esa misma colección aparecen las manchas de inundación para el estado actual y para el futuro correspondientes a los periodos de retorno de la avenida máxima ordinaria, a la de 100 años y a la de 500 años.

Como se puede ver la actuación correspondiente a la Unidad de Actuación nº19 queda dentro de la zona de policía de la rambla del Algarrobo y dentro de la zona de Dominio Público Hidráulico y Servidumbre. La superficie de la Unidad de Actuación que queda dentro de la zona de Dominio Público Hidráulico y dentro de la zona de Servidumbre se deberá clasificar como Suelo No Urbanizable de Especial Protección (SNUEPDPH).

La zona de la unidad de actuación que se encuentra afectada por la mancha de inundación correspondiente a la avenida de periodo de retorno de 500 años, se deberá clasificar como Suelo No Urbanizable de Especial Protección (SNUEPZI).

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 25/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/vei	rificarFirma

5. CONCLUSIÓN

Los terrenos objeto de este estudio que se encuentran dentro de la zona de Dominio Público Hidráulico y de la zona de Servidumbre de la rambla de Algarrobo se deberán clasificar como Suelo No Urbanizable de Especial Protección.

Los terrenos que quedan dentro de la mancha de inundación de periodo de retorno de 500 años se deberán clasificar como Suelo No Urbanizable de Especial Protección.

El presente documento del Estudio Hidrológico e Hidráulico de la Unidad de Actuación nº 19 "Rambla del Algarrobo" del Plan General de Vera (Almería), cumple con las Normas vigentes y por tanto queda en condiciones de ser presentado a la aprobación de los distintos Organismos competentes en la materia.

En Almería, mayo de 2013

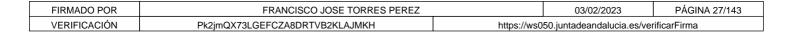
APROBADO DEFINITIVAMENTE
Segun Auterdo de la CTOTU
2 FEBRERO 2023
Delegación Territorial de Formento
Articulación del Territorio y Vivienda en Almeria
se electrónica: EL JEPE DEL SERVICIO DE URBANISMO

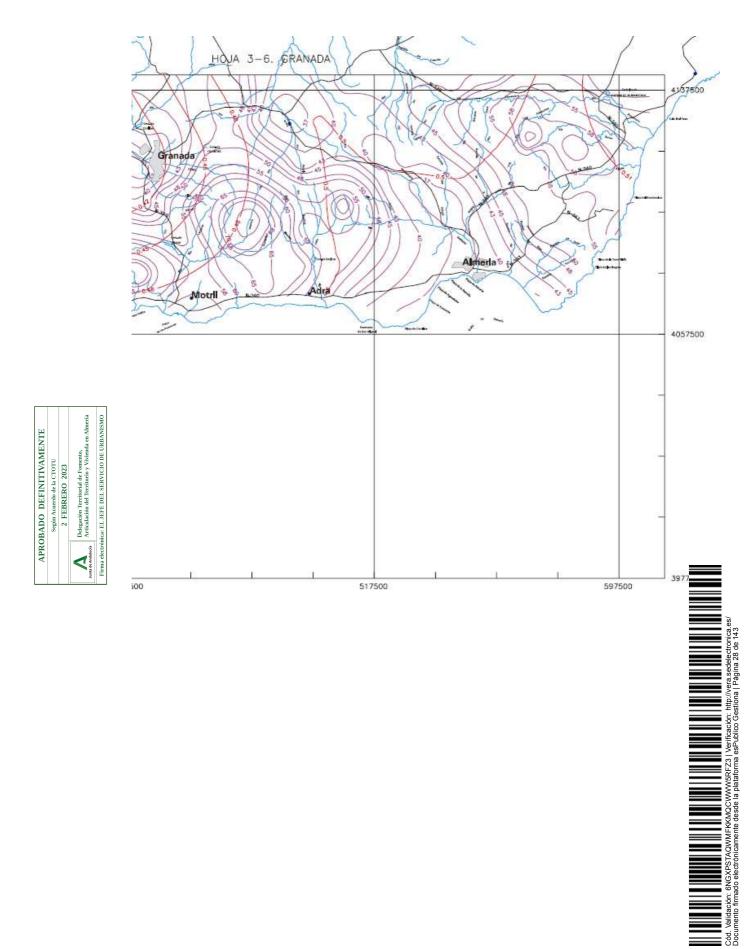
TECK

Raquel Pareja Martínez
Ingeniero de Caminos, Canales y Puertos
Colegiada nº 18.986

Motica de Substial

Mónica Sebastián Ferreiro Ingeniero de Caminos, Canales y Puertos Colegiada nº13.599


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 26/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/vei	rificarFirma


APROBADO DEFINITIVAMENTE
Según Acuerdo de la CTOTU
2 FEBRERO 2023

Delegación Territorial de Fomento,
Articulación del Territorio y Vivienda en Almería
Firma electrónica: EL JEFE DEL SERVICIO DE URBANISMO

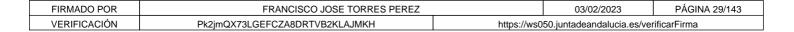
APÉNDICE 1: MÁXIMAS LLUVIAS DIARIAS EN LA ESPAÑA PENINSULAR

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 28/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	https://ws050.juntadeandalucia.es/verificarFirma		

APROBADO DEFINITIVAMENTE

Según Acuerdo de la CTOTU

2 FEBRERO 2023


2 FEBRERO 2023

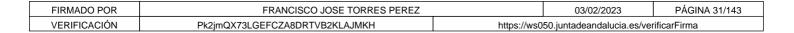
Articulación del Territorial de Fomento,
Articulación del Territorio y Viviende en Almería

Firma electrónica: EL JEFE DEL SERVICIO DE URBANISMO

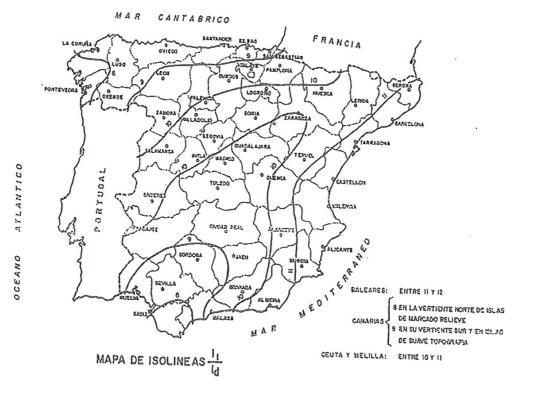
APÉNDICE 2: FACTOR DE AMPLIACIÓN PARA EL CÁLCULO EXTREMAL

	PERIODO DE RETORNO EN AÑOS (T)							
C _v	2	5	10	25	50	100	200	500
0.30	0.935	1.194	1.377	1.625	1.823	2.022	2.251	2.541
0.31	0.932	1.198	1.385	1.640	1.854	2.068	2.296	2.602
0.32	0.929	1.202	1.400	1.671	1.884	2.098	2.342	2.663
0.33	0.927	1.209	1.415	1.686	1.915	2.144	2.388	2.724
0.34	0.924	1.213	1.423	1.717	1.930	2.174	2.434	2.785
0.35	0.921	1.217	1.438	1.732	1.961	2.220	2.480	2.831
0.36	0.919	1.225	1.446	1.747	1.991	2.251	2.525	2.892
0.37	0.917	1.232	1.461	1.778	2.022	2.281	2.571	2.953
0.38	0.914	1.240	1.469	1.793	2.052	2.327	2.617	3.014
0.39	0.912	1.243	1.484	1.808	2.083	2.357	2.663	3.067
0.40	0.909	1.247	1.492	1.839	2.113	2.403	2.708	3.128
0.41	0.906	1.255	1.507	1.854	2.144	2.434	2.754	3.189
0.42	0.904	1.259	1.514	1.884	2.174	2.480	2.800	3.250
0.43	0.901	1.263	1.534	1.900	2.205	2.510	2.846	3.311
0.44	0.898	1.270	1.541	1.915	2.220	2.556	2.892	3.372
0.45	0.896	1.274	1.549	1.945	2.251	2.586	2.937	3.433
0.46	0.894	1.278	1.564	1.961	2.281	2.632	2.983	3.494
0.47	0.892	1.286	1.579	1.991	2.312	2.663	3.044	3.555
0.48	0.890	1.289	1.595	2.007	2.342	2.708	3.098	3.616
0.49	0.887	1.293	1.603	2.022	2.373	2.739	3.128	3.677
0.50	0.885	1.297	1.610	2.052	2.403	2.785	3.189	3.738
0.51	0.883	1.301	1.625	2.068	2.434	2.815	3.220	3.799
0.52	0.881	1.308	1.640	2.098	2.464	2.861	3.281	3.860

APROBADO DEFINITIVAMENTE


Tabla 7.1 - Cuantiles Y_t , de la Ley SQRT-ET max, también denominados Factores de Amplificación K_T , en el "Mapa para el Cálculo de Máximas Precipitaciones Diarias en la España Peninsular" (1997).

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 30/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH https://ws05		50.juntadeandalucia.es/vei	rificarFirma



APÉNDICE 3: MAPA DE ISOLÍNEAS

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 32/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH https://ws0		50.juntadeandalucia.es/ve	rificarFirma

APÉNDICE 4: ESTIMACIÓN UMBRAL DE ESCORRENTÍA Y **CORRECTOR DEL MISMO**

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 33/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	ZA8DRTVB2KLAJMKH https://ws0		rificarFirma

TABLA 2-1 (Continuación)

ESTIMACION INICIAL DEL UMBRAL DE ESCORRENTIA Po (mm)

	Pendiente	Caracteristicas	cas Grupo de suelo		0	
lso de la tierra	(%)	hidrológicas	A	8	С	Q
Rotación de cultivos		R	26	15	9	6
pobres	≥3	Ν	28	17	11	8
-	<3	R/N	30	19	13	10
		R	37	20	12	9
Rotación de cultivos Jensos	≥3	N	42	23	14	11
	<3	R/N	47	25	16	13
	≥3	Pobre Media Buena Muy buena	24 53 *	14 23 33 41	8 14 18 22	6 9 13 15
Praderas	<3	Pobre Media Buena	58 * *	25 35 *	12 17 22	7 10 14
		Muy buena	*	*	25	16
Plantaciones regula- res de aprovecha-		Pobre Media Buena	62 * *	26 34 42 34	15 19 22 19	10 14 15 14
miento forestal	<3	Pobre Media Buena	*	42 50	22 25	15 16
Masas forestales (bosques, Monte bajo, etc.)		Muy clara Clara Media Espesa Muy espesa	40 60 *	17 24 34 47 65	8 14 22 31 43	10 10 20 33
2. *: denota que	ota cultivo seg esa parte de de Idales de aven	gún la linea de maxima cuenca debe considera	rse inex	istente		_
Tipo de terreno		Pendiente (%)	e	_	bral de entia (r	
Rocas permeables		≥3 <3			3 5	
Rocas impermeables		≥3 <3			2 4	
	sin pavimen	to.			2	=

APROBADO DEFINITIVAMENTE 2 FEBRERO 2023

Tipo de terreno	Pendiente (%)	Umbral de escorrentia (mm)
Rocas	≥3	3
permeables	<3	5
Rocas impermeables	≥3 <3	2 4
Firmes granulares sin pavimento		2
Adoquinados		1,5
Pavimentos bituminosos o de hormigón		1

TABLA 2-2

CLASIFICACION DE SUELOS A EFECTOS DEL UMBRAL DE ESCORRENTIA

Grupo	Infiltración (cuando están muy húmedos)	Potencia	Textura	Drenaje	
Α	Rápida	Grande	Arenosa Areno-limosa	Perfecto	
В	Moderada	Media a grande	Franco-arenosa Franca Franco-arcillosa- arenosa Franco-limosa	Bueno a moderado	
С	Lenta	Media a pequeña	Franco-arcillosa Franco-arcillo- limosa Arcillo-arenosa	Imperfecto	
D	Muy lenta	Pequeño (litosuelo) u horizontes de arcilla	Arcillosa	Pobre o muy pobre	
Nota: Los terrenos con nivel freático alto se incluirán en el Grupo D.					

Los núcleos urbanos, edificaciones rurales, caminos, etc., no se tendrán en cuenta donde representen una proporción despreciable del área total. En su caso, deberán diferenciarse las proporciones de los distintos tipos de suelo, atribuyendo a cada una el valor correspondiente de Po. Deberán tenerse en cuenta las modificaciones futuras previsibles en la cuenca, tales como urbanizaciones, repoblaciones, cambios de cultivos, supresión de barbechos. etc.

Si no se requiriera gran precisión, podrá tomarse simplificadamente un valor conservador de Po (sin tener que multiplicarlo luego por el coeficiente de la Figura 2-5) igual a 20 mm, salvo en cuencas con rocas o suelos arcillosos muy someros, en las que se podrá tomar igual a 10 mm. Especial interés práctico tiene la estimación indirecta de Po basada en información sobre crecidas ordinarias; en relación con este método, conviene tener en cuenta que:

- Se puede determinar el orden de magnitud de los caudales en función de los niveles del agua en el cauce al paso de avenidas habituales, conocidos —en general— por los ribereños al menos de forma aproximada. Datos de esta naturaleza muy característicos son —en algunos casos— el número de años en los que permanece seco el curso del agua, o bien la frecuencia con la que se producen desbordamientos del cauce principal.
- Los resultados del cálculo de caudales de avenidas habituales —o de pequeño período de retorno— son muy sensibles a las variaciones de Po, y por ello es suficiente una información aproximada de dichas avenidas para determinar satisfactoriamente Po.

			Control of the Contro	
FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 35/143
VERIFICACIÓN	Pk2imQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.iuntadeandalucia.es/ver	rificarFirma

APROBADO DEFINITIVAMENTE

APÉNDICE 5: CÁLCULO DE CAUDALES

FIRMADO POR	MADO POR FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 36/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH https://ws09		50.juntadeandalucia.es/ve	rificarFirma

CÁLCULO DE CAUDALES RAMBLA DEL ALGARROBO. SITUACIÓN ACTUAL Y FUTURA

1. INTENSIDAD DE LA PRECIPITACIÓN DE CÁLCULO

• Tiempo de Concentración

$$T_C = 0.3 (L/J^{1/4})^{0.76}$$

$$T_C = 2.08 \text{ h}$$

Características de la cuenca:

S = 10.201Superficie de la cuenca en Km² 8.321 Longitud del cauce principal en Km

H = 125 Desnivel máximo en m 0.015 Pendiente media (m/m)

• Precipitación de Cálculo

$$P = 56$$
 mm/día $C_V = 0.52$

Factores de amplificación K_T:

	Periodo de Retorno en años (T)										
C_{V}	2	5	10	25	50	100	200	500			
0.52	0.881	1.308	1.640	2.098	2.464	2.861	3.281	3.860			

Precipitación diaria:

Coeficiente de simultaneidad de la precipitación (para considerar el efecto de la extensión de la cuenca):

$$P_d = P \times K_T$$
 (en mm/día)

$$K_{A} = 1$$
 si $A \le 1$ km^{2} $k_{A} = 10.201$ km^{2} $k_{A} = 1 - \frac{\log A}{15}$ $k_{A} = 1 - \frac{\log A}{15}$

				Poriodo do	Potorno	n años /T	١		
	Periodo de Retorno en años (T)								
	MCO	2	5	10	25	50	100	200	500
P_d	53.0	48.9	72.6	91.0	116.4	136.8	158.8	182.1	214.2
P' _d	49.4	45.6	67.7	84.9	108.6	127.6	148.1	169.9	199.8

Intensidad de Iluvia

$$It = Id \cdot \left(\frac{I_1}{Id}\right)^{\frac{28^{0.1} - t^{0.1}}{28^{0.1} - 1}}$$
 $I_d = P_d / 24$ $I_1 / I_d = \boxed{10.5}$

				Periodo de	Retorno e	en años (T)		
	MCO	2	5	10	25	50	100	200	500
I _d (mm/h)	2.06	1.90	2.82	3.54	4.53	5.31	6.17	7.08	8.33
I _t (mm/h)	13.77	12.70	18.86	23.64	30.24	35.52	41.24	47.30	55.64

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 37/143
VERIFICACIÓN	Pk2imQX73I GFFCZA8DRTVB2KI AJMKH	https://ws050.juntadeandalucia.es/verificarFirma		

Para el cálculo de los caudales se sigue el MÉTODO RACIONAL:

$$Q = \frac{C \, x \, I \, x \, A \, x}{3.6} \, K \qquad \qquad Q \, en \, m^3/s \; , \quad A \, en \, Km^2 \; , \quad I \, en \, mm/h \qquad \qquad \rightarrow \qquad \qquad K = \; 1 \label{eq:Q}$$

• Coeficiente de Escorrentía. SITUACIÓN ACTUAL

$$C = \frac{\left[(P_d / P_0) - 1 \right] * \left[(P_d / P_0) + 23 \right]}{\left[(P_d / P_0) + 11 \right]^2}$$

Umbral de escorrentía Po:

	Subcuencas		Descripción de la subsuarsa	%	Ро
	Sup. en m²	Sup. en %	Descripción de la subcuenca	%	Po
A1	300.290.00	2.94%	Conglomerados, arenas y arcillas(c) Monte bajo (muy clara) Cultivos de invierno	30% 70%	8 10
A2	20.028.00	0.20%	Conglomerados y areniscas (B) Monte bajo (muy clara)	100%	17
А3	12.803.00	0.13%	Conglomerados, arenas y arcillas(c) Monte bajo (muy clara)	100%	8
A4	1.421.065.00	13.93%	Conglomerados y areniscas (B) Monte bajo (muy clara) Pavimentado	60% 40%	17 1
			Conglomerados, arenas y arcillas(c)		
A5	74.892.00	0.73%	Cultivos en hilera	100%	8
A6	608.016.00	5.96%	Aluvial (B) Cultivos en hilera Cultivos de invierno	40% 60%	13 17
A7	29.453.00	0.29%	Margas (B) Pavimentado	100%	1
A8	4.417.811.00	43.31%	Aluvial (B) Cultivos en hilera Cultivos de invierno	40% 60%	13 17
A9	254.706.00	2.50%	Margas (B) Cultivos en hilera	100%	13
A10	128.839.00	1.26%	Coluvial (B) Monte bajo (muy claro)	100%	17

APROBADO DEFINITIVAMENTE Según Acuerdo de la CTOTU 2 FEBRERO 2023 Artículación del Territorio y Wisienda en Almeria Artículación del Territorio y Wisienda en Almeria Firma electrónica: EL JEFE DEL SERVICIO DE URBANISMO

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 38/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/ve	rificarFirma

		Į.			<u> </u>
A11	137.000.00	1.34%	Coluvial (B) Monte bajo (muy claro)	100%	17
A12	381.753.00	3.74%	Coluvial (B) Cultivos de invierno	100%	17
A13	237.472.00	2.33%	Margas (B) Monte bajo (muy claro)	100%	17
A14	891.449.00	8.74%	Margas (B) Monte bajo (muy claro) Cultivos en hilera Cultivos de invierno Pavimentado	10% 30% 20% 40%	17 13 17 1
A15	292.428.00	2.87%	Coluvial (B) Cultivos de invierno	100%	17
A16	122.851.00	1.20%	Conglomerados y areniscas (B) Cultivos de invierno	100%	17
A17	78.120.00	0.77%	Conglomerados y areniscas (B) Masas forestale (Muy clara)	100%	17
A18	99.410.00	0.97%	Margas (B) Masas forestale (Muy clara)	100%	17
A19	42.610.00	0.42%	Aluvial (B) Masas forestales (Muy clara)	100%	24
A20	17.495.00	0.17%	Aluvial (B) Masas forestales (Muy clara)	100%	24
A21	139.369.00	1.37%	Margas (B) Masas forestales (Muy clara)	100%	17
A22	493.101.00	4.83%	Pavimento bituminoso	100%	1
A _{total}	10.200.961.00	100.00%			

Incremento por el factor de corrección:

Delegación Territorial de Fomento, Articulación del Territorio y Vivienda en Almería

APROBADO DEFINITIVAMENTE
Según Acuerdo de la CTOTU
2 FEBRERO 2023

1

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 39/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		

Coeficientes de Escorrentía:

Para F	o = .	1 x 1.	.0 = 1.	00	Área =	1.447.55	59.60		
	MCO	2	5	10	25	50	100	200	500
С	0.961	0.955	0.977	0.984	0.990	0.992	0.994	0.996	0.997
$Q(m^3/s)$	6.122	5.616	8.527	10.774	13.861	16.321	18.986	21.801	25.678
Para Po = 8 x 1.0 = 8.00 Área =						177.78	2.00		
Pala P	MCO	3 x 1.	.0 = 6. 5	10	Årea = 25	50	100	200	500
С	0.512	0.484	0.620	0.692	0.762	0.802	0.835	0.861	0.889
Q(m ³ /s)	0.401	0.349	0.665	0.930	1.310	1.619	1.957	2.317	2.812
Q(III /5)	0.401	0.349	0.005	0.930	1.310	1.019	1.937	2.317	2.012
Para F	Po = 1	0 x 1.	.0 = 10	.00	Área =	210.20	3.00		
	MCO	2	5	10	25	50	100	200	500
С	0.434	0.405	0.544	0.621	0.699	0.745	0.784	0.816	0.850
Q(m ³ /s)	0.401	0.346	0.690	0.987	1.421	1.779	2.173	2.595	3.180
·									
Para F		_		.00	Área =	2.532.47		T	· ·
	MCO	3	5	10	25	50	100	200	500
С	0	0	0.452	0.531	0.616	0.668	0.713	0.751	0.793
$Q(m^3/s)$	4	3	6.901	10.176	15.080	19.205	23.812	28.784	35.737
D 5) - 4	7 4	0 47	00	Á	F 000 0	44.00		
Para F				.00	Area =	5.832.94		000	500
	MCO	2	5	10	25	50	100	200	500
С	0	0	0.359	0.437	0.524	0.579	0.629	0.673	0.722
$Q(m^3/s)$	7	0	12.612	19.277	29.551	38.394	48.427	59.400	74.936
Para F	20 - 2	4 x 1.	.0 = 24	.00	Área =	60.105	5.00		
1 did i	MCO	2	5	10	25	50.100	100	200	500
С	0	0	0	0.319	0.403	0.459	0.512	0.559	0.614
Q(m ³ /s)	0.0	0.0	0.1	0.1	0.234	0.313	0.406	0.509	0.657

Caudal. SITUACIÓN ACTUAL

Delegación Territorial de Fonento,
Articulación del Territorio y Vivienda en Almeria
mos e nostocia.
EL JEEE DEL SERVICIO DE URBANISMO

J									
	Periodo de Retorno en años (T)								
	MCO	2	5	10	25	50	100	200	500
C medio	0.156	0.154	0.483	0.554	0.629	0.677	0.719	0.755	0.795
I (mm/h)	13.77	12.70	18.86	23.64	30.24	35.52	41.24	47.30	55.64
A (Km ²)	10.201	10.201	10.201	10.201	10.201	10.201	10.201	10.201	10.201
Q(m ³ /s)	6.993	6.373	29.686	42.708	62.065	78.400	96.709	116.547	144.415

0		
95	ca.es	
64	ctroni	
201	edeleg	
0 95 64 201 415	Cod Validación: 6NGXPSTAQWMFKKNOCWWWGRFZ3 Verificación: http://vera.sedelectronica.es/	
	Cód. Valid	

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 40/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/vei	rificarFirma

Umbral de escorrentía Po:

		Subcuencas		Descripción de la subcuenca	%	Ро
		Sup. en m²	Sup.(%)	Descripcion de la subcaenca	70	. •
	A1	300.290.00	2.94%	Conglomerados, arenas y arcillas(c) Monte bajo (muy clara) Cultivos de invierno	30% 70%	8 10
	A2	20.028.00	0.20%	Conglomerados y areniscas (B) Monte bajo (muy clara)	100%	17
	А3	12.803.00	0.13%	Conglomerados, arenas y arcillas(c) Monte bajo (muy clara)	100%	8
KBANISMO	A4	1.421.065.00	13.93%	Conglomerados y areniscas (B) Monte bajo (muy clara) Pavimentado	60% 40%	17 1
O DE O				Conglomerados, arenas y arcillas(c)		
JEFE DEL SERVICIO DE	A5	74.892.00	0.73%	Cultivos en hilera	100%	8
Firma electronica: EL JE	A6	608.016.00	5.96%	Aluvial (B) Cultivos en hilera Cultivos de invierno	40% 60%	13 17
	A7	29.453.00	0.29%	Margas (B) Pavimentado	100%	1
	A8	4.417.811.00	43.31%	Aluvial (B) Cultivos en hilera Cultivos de invierno	40% 60%	13 17
	A9	254.706.00	2.50%	Margas (B) Cultivos en hilera	100%	13
	A10	128.839.00	1.26%	Coluvial (B) Monte bajo (muy claro)	100%	17
	A11	137.000.00	1.34%	Coluvial (B) Monte bajo (muy claro)	100%	17
	A12	381.753.00	3.74%	Coluvial (B) Cultivos de invierno	100%	17

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 41/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/ve	rificarFirma

Cód. Validación: 6NGXPSTAQWMFKKMQCWWWSRF23 Verificación: http://vera.sedelec Documento firmado electrónicamente desde la plataforma esPublico Gestiona Página 42

		A13	237.472.00	2.33%	Margas (B) Monte bajo (muy claro)	100%	17
	A14	891.449.00	8.74%	Margas (B) Monte bajo (muy claro) Cultivos en hilera Cultivos de invierno Pavimentado	10% 30% 20% 40%	17 13 17 1	
	A15	292.428.00	2.87%	Coluvial (B) Cultivos de invierno	100%	17	
	A16	122.851.00	1.20%	Conglomerados y areniscas (B) Cultivos de invierno	100%	17	
		A17	78.120.00	0.77%	Conglomerados y areniscas (B) Masas forestale (Muy clara)	100%	17
	en Almería BANISMO	A18	99.410.00	0.97%	Margas (B) Masas forestale (Muy clara)	100%	17
de la CTOTU	Delegación Territorial de Fomento, Articulación del Territorio y Vivienda en Almería Firma electrónica: EL JEFE DEL SERVICIO DE URBANISMO	A19	42.610.00	0.42%	Aluvial (B) Masas forestales (Clara)	100%	24
Según Acuerdo de la CTOTU 2 FEBRERO 2023	Delegación Terri Articulación del ' Articulación del ' Friculación del ' Articulación del	A20	17.495.00	0.17%	Aluvial (B) Masas forestales (Clara)	100%	24
	Junts de Andelucia Firma electró	A21	108.630.00	1.06%	Margas (B) Masas forestales (Clara)	100%	17
		A21'	30.739.00	0.30%	Pavimento bituminoso	100%	1
		A22	493.101.00	4.83%	Pavimento bituminoso	100%	1
		A _{total}	10.200.961.00	100.00%	1	ı	

Incremento por el factor de corrección:

APROBADO DEFINITIVAMENTE

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 42/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/ver	rificarFirma

Para F	o = 1	.0 x 1	.0 = 1.	00	Área =	30.739	.00		
	MCO	2	5	10	25	50	100	200	500
С	0.961	0.955	0.977	0.984	0.990	0.992	0.994	0.996	0.997
$Q(m^3/s)$	0.130	0.119	0.181	0.229	0.294	0.347	0.403	0.463	0.545

• Zona de la cuenca que no se ve afectada por la actuación

Para F	Po =	1 x 1.	.0 = 1.	00	Área =	1.447.55	59.60		
	MCO	2	5	10	25	50	100	200	500
С	0.961	0.955	0.977	0.984	0.990	0.992	0.994	0.996	0.997
$Q(m^3/s)$	6.122	5.616	8.527	10.774	13.861	16.321	18.986	21.801	25.678
Para F	Po = 8	8 x 1.	.0 = 8.	00	Área =	177.78	2.00		
	MCO	2	5	10	25	50	100	200	500
С	0.512	0.484	0.620	0.692	0.762	0.802	0.835	0.861	0.889
$Q(m^3/s)$	0.401	0.349	0.665	0.930	1.310	1.619	1.957	2.317	2.812
Para F	Po = 1	0 x 1.	.0 = 10	.00	Área =	210.20	3.00		
	MCO	2	5	10	25	50	100	200	500
С	0.434	0.405	0.544	0.621	0.699	0.745	0.784	0.816	0.850
$Q(m^3/s)$	0.401	0.346	0.690	0.987	1.421	1.779	2.173	2.595	3.180
Para F	Po = 1	3 x 1.	.0 = 13	.00	Área =	2.532.47	71.50		
	MCO	3	5	10	25	50	100	200	500
С	0	0	0.452	0.531	0.616	0.668	0.713	0.751	0.793
$Q(m^3/s)$	3.82	3.25	6.90	10.18	15.08	19.20	23.81	28.78	35.74
Para F	Po = 1	7 x 1.	.0 = 17	.00	Área =	5.802.20	05.90		
	MCO	2	5	10	25	50	100	200	500
С	0	0	0.359	0.437	0.524	0.579	0.629	0.673	0.722
Q(m ³ /s)	6.53	5.44	12.55	19.18	29.40	38.19	48.17	59.09	74.54
Para F	Po = 2 MCO	24 x 1.	.0 = 24	.00	Área =	60.105 50	5.00	200	500
	IVICO		Ü	10	20	50	100	200	500

• Caudal. SITUACIÓN FUTURA

 $Q(m^3/s)$

0

0.041

0

0.033

0

0.089

APROBADO DEFINITIVAMENTE

		Periodo de Retorno en años (T)								
	MCO	2	5	10	25	50	100	200	500	
C medio	0.159	0.157	0.484	0.555	0.630	0.678	0.720	0.756	0.796	
I (mm/h)	13.77	12.70	18.86	23.64	30.24	35.52	41.24	47.30	55.64	
A (Km ²)	10.201	10.201	10.201	10.201	10.201	10.201	10.201	10.201	10.201	
Q(m ³ /s)	7.124	6.494	29.801	42.836	62.205	78.545	96.859	116.698	144.567	

0.319

0.145

0.403

0.234

0.459

0.313

0.512

0.406

0.559

0.509

0.614

0.657

Cod. Validación: 6NGXPSTAQWMFKKMQCWWW5RFZ3 Verificación Documento firmado electrónicamente desde la plataforma esPublico G	Es copia auténtica de documento electrónico
40/440	

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 43/143	
VERIFICACIÓN	Pk2imQX73LGEECZA8DRTVB2KLA.IMKH	https://ws0	50 iuntadeandalucia es/ver	rificarFirma

CÁLCULO DE CAUDALES INTERMEDIOS RAMBLA DEL ALGARROBO

• CAUDAL en el punto P 1

Coeficiente de escorrentía:

Subcuencas

	Subcuencas		Descripción de la subcuenca	%	Po
	Sup. en m²	Sup. en %	Descripcion de la subcuellea	/0	. 0
A1	300.290.00	3.36%	Conglomerados, arenas y arcillas(c) Monte bajo (muy clara) Cultivos de invierno	30% 70%	8 10
A2	20.028.00	0.22%	Conglomerados y areniscas (B) Monte bajo (muy clara)	100%	17
A3	12.803.00	0.14%	Conglomerados, arenas y arcillas(c) Monte bajo (muy clara)	100%	8
A4	1.421.065.00	15.89%	Conglomerados y areniscas (B) Monte bajo (muy clara) Pavimentado	60% 40%	17 1
			Conglomerados, arenas y arcillas(c)		
A5	74.892.00	0.84%	Cultivos en hilera	100%	8
A6	608.016.00	6.80%	Aluvial (B) Cultivos en hilera Cultivos de invierno	40% 60%	13 17
A7	29.453.00	0.33%	Margas (B) Pavimentado	100%	1
A8	3.774.717.00	42.22%	Aluvial (B) Cultivos en hilera Cultivos de invierno	40% 60%	13 17
A9	254.706.00	2.85%	Margas (B) Cultivos en hilera	100%	13
A10	128.839.00	1.44%	Coluvial (B) Monte bajo (muy claro)	100%	17
A11	137.000.00	1.53%	Coluvial (B) Monte bajo (muy claro)	100%	17
A12	381.753.00	4.27%	Coluvial (B) Cultivos de invierno	100%	17

APROBADO DEFINITIVAMENTE	Según Acuerdo de la CTOTU	2 FEBRERO 2023	Delegación Territorial de Fomento, Articulación del Territorio y Vivienda en Almería	Firma electrónica: EL JEFE DEL SERVICIO DE URBANISMO
APR			Junta de Andalucía	Firma electro

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 44/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/ve	rificarFirma

A13	237.472.00	2.66%	Margas (B) Monte bajo (muy claro)	100%	17
A14	891.449.00	9.97%	Margas (B) Monte bajo (muy claro) Cultivos en hilera Cultivos de invierno Pavimentado	10% 30% 20% 40%	17 13 17 1
A15	292.428.00	3.27%	Coluvial (B) Cultivos de invierno	100%	17
A16	122.851.00	1.37%	Conglomerados y areniscas (B) Cultivos de invierno	100%	17
A17	78.120.00	0.87%	Conglomerados y areniscas (B) Masas forestale (Muy clara)	100%	17
A18	99.410.00	1.11%	Margas (B) Masas forestale (Muy clara)	100%	17
A22	75.720.00	0.85%	Pavimento bituminoso	100%	1
A _{total}	8.941.012.00	100.00%			

Incremento por el factor de corrección:

Para Po =

Delegación Territorial de Fomento, Articulación del Territorio y Vivienda en Almería

0	=	1.00	Área =	1.030.17	78.60	
	5	10	25	50	100	

	MCO	2	5	10	25	50	100	200	500
С	0.961	0.955	0.977	0.984	0.990	0.992	0.994	0.996	0.997
Q(m ³ /s)	4.357	3.996	6.068	7.667	9.864	11.615	13.511	15.515	18.274

Para P	o = 0	3 x 1.	.0 = 8.	00	Área =	177.78	2.00		
	MCO	2	5	10	25	50	100	200	500
С	0.512	0.484	0.620	0.692	0.762	0.802	0.835	0.861	0.889
Q(m ³ /s)	0.401	0.349	0.665	0.930	1.310	1.619	1.957	2.317	2.812

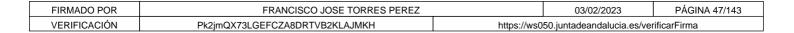
Para P	Po = 1	0 x 1.	.0 = 10	.00	Área =	210.20	3.00		
	MCO	2	5	10	25	50	100	200	500
С	0.434	0.405	0.544	0.621	0.699	0.745	0.784	0.816	0.850
Q(m ³ /s)	0.401	0.346	0.690	0.987	1.421	1.779	2.173	2.595	3.180

	Para F	o = 1	3 x 1	.0 = 13	.00	Área =	2.275.23	33.90		
		MCO	2	5	10	25	50	100	200	500
	С	0	0	0.452	0.531	0.616	0.668	0.713	0.751	0.793
Q	(m ³ /s)	3.43	2.92	6.20	9.14	13.55	17.25	21.39	25.86	32.11

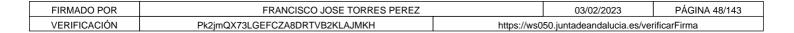
FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 45/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/ve	rificarFirma

Para F	Po = 1	7 x 1	.0 = 17	.00	Área =	5.247.61	14.50		
	MCO	2	5	10	25	50	100	200	500
С	0.3	0.2	0.359	0.437	0.524	0.579	0.629	0.673	0.722
Q(m ³ /s)	5.90	4.92	11.35	17.34	26.59	34.54	43.57	53.44	67.42

	MCO	2	5	10	25	50	100	200	500
C medio	0.131	0.129	0.463	0.534	0.610	0.658	0.700	0.737	0.778
Q(m ³ /s)	5.16	4.69	24.97	36.07	52.73	66.81	82.60	99.73	123.79

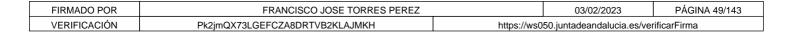

Delegación Territorial de Fomento, Juna de Audición del Territorio y Vivienda en Almería	APRC	APROBADO DEFINITIVAMENTE Según Acuerdo de la CTOTU 2 EFERENDO 2022
	Junta de Andalucía	Delegación Territorial de Fomento, Articulación del Territorio y Vivienda en Almería

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	FRANCISCO JOSE TORRES PEREZ					
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/ver	rificarFirma			



APÉNDICE 6: SALIDAS DEL MODELO HEC-RAS

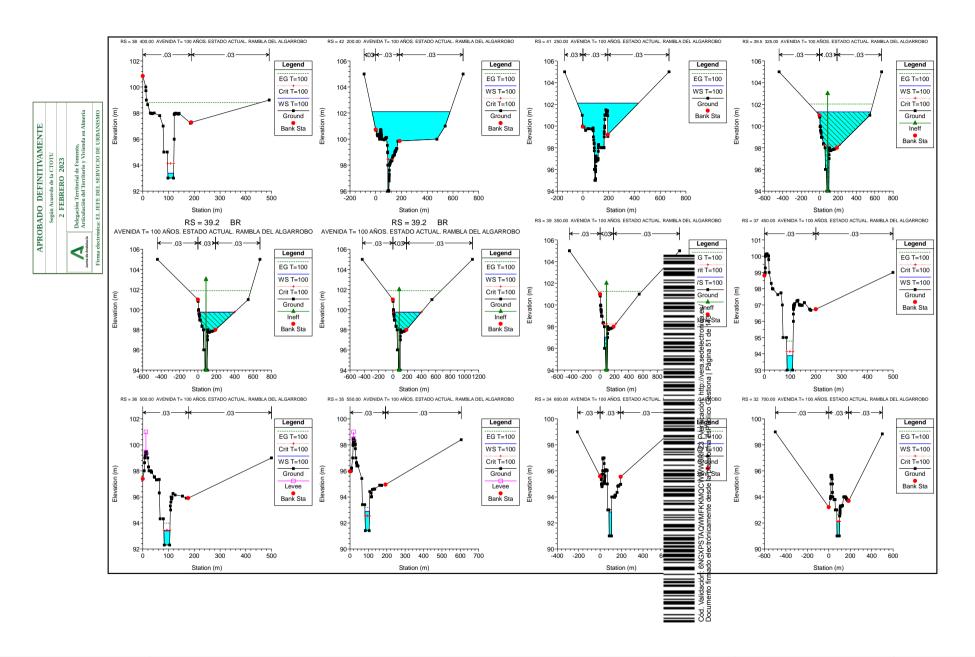
ESTADO ACTUAL



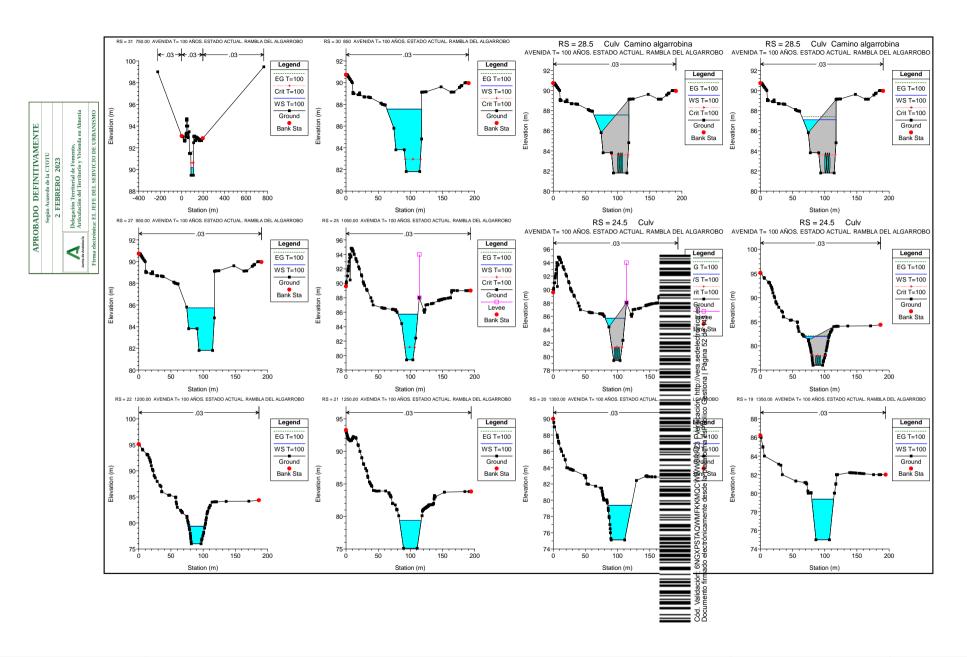
APROBADO DEFINITIVAMENTE
Según Acuerdo de la CTOTU
2 FEBRERO 2023

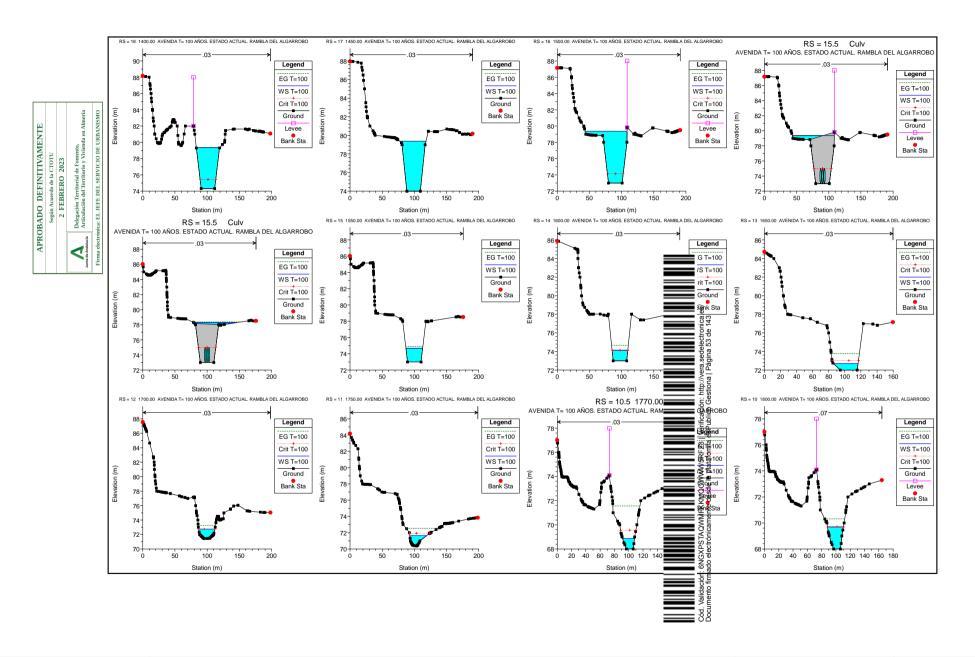
A Articulación del Territorio y Vivienda en Almeria
Firma electrónica: EL JEPE DEL SERVICIO DE URBANISMO

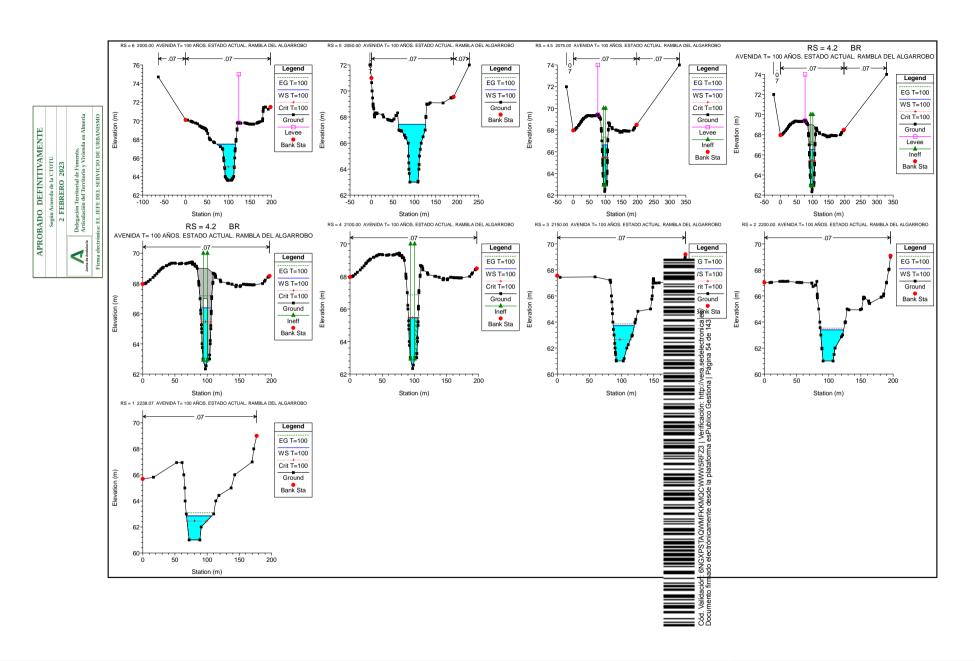
AVENIDA T = 100 ANOS

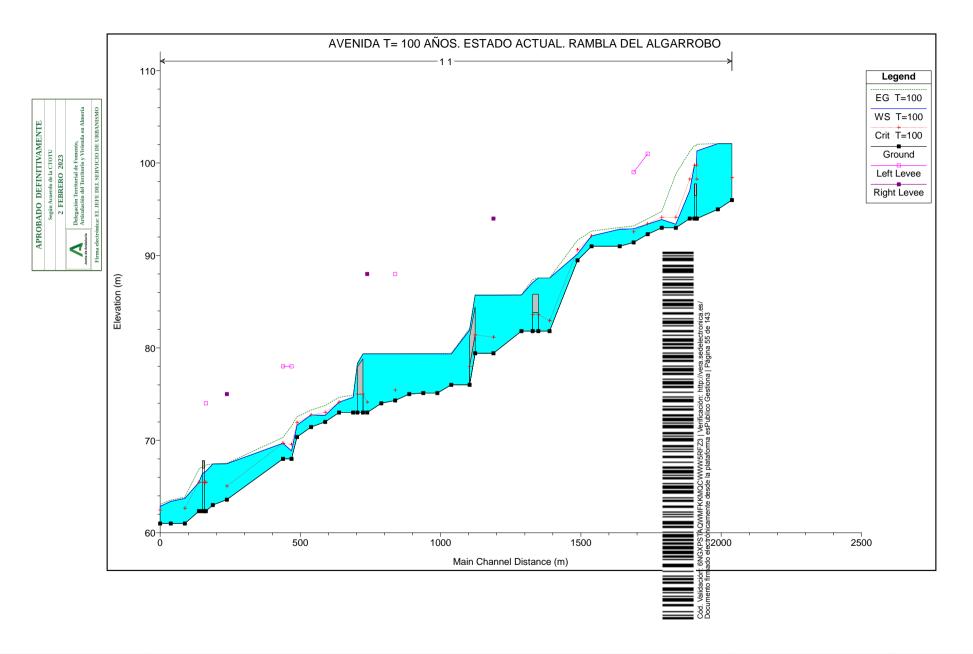


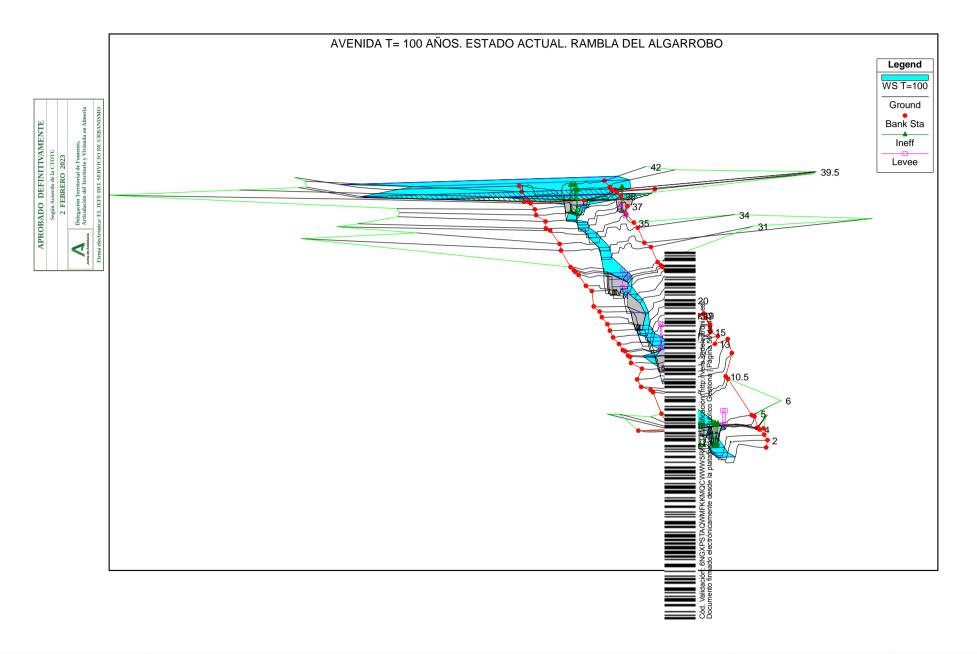
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	Sta W.S. Lft	Sta W.S. Rgt
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)		(m)	(m)
	42	T=100	82.60	96.00	102.10	98.43	102.10	0.000001	0.07	1281.45	606.76	0.01	-29.33	577.
	41	T=100	82.60	95.00	102.10		102.10	0.000002	0.10	988.32	474.82	0.02	-43.67	431.
	39.5	T=100	82.60	94.00	101.31	98.26	102.03	0.000901	3.77	21.92	590.67	0.44	-33.80	556.8
	39.2		Bridge											
	39	T=100	82.60	94.00	97.02	98.26	101.26	0.017143	9.12	9.06	41.83	1.67	60.96	102.
	38	T=100	82.60	93.00	93.37	94.13	98.81	0.374711	10.33	8.00	21.93	5.46	97.38	119.
	37	T=100	82.60	93.00	93.89	94.13	94.78	0.020204	4.18	19.77	23.23	1.45	87.05	110.:
	36	T=100	82.60	92.31	93.40	93.44	93.99	0.010504	3.40	24.31	23.72	1.07	81.61	105.
	35	T=100	82.60	91.41	92.88	92.55	93.19	0.003804	2.46	33.62	24.68	0.67	81.03	105.
	34	T=100	82.60	91.00	92.84		93.03	0.001809	1.93	42.77	25.59	0.48	81.88	107.4
	32	T=100	82.60	91.00	92.12	92.12	92.65	0.009177	3.21	25.72	24.88	1.01	75.32	100.2
	31	T=100	82.60	89.47	90.17	90.61	91.66	0.046504	5.42	15.23	22.74	2.12	86.33	109.0
	30	T=100	82.60	81.81	87.56	82.94	87.57	0.000024	0.38	214.78	54.22	0.06	63.41	117.6
	28.5		Culvert											
	27	T=100	82.60	81.81	85.73		85.75	0.000102	0.66	125.89	42.92	0.12	74.62	117.
	25	T=100	82.60	79.42	85.71	81.16	85.74	0.000078	0.68	122.00	30.97	0.11	80.69	111.
	24.5		Culvert											
	22	T=100	82.60	76.00	79.34		79.42	0.000434	1.26	65.71	24.79	0.25	77.91	102.7
	21	T=100	82.60	75.12	79.36		79.39	0.000096	0.71	116.17	33.73	0.12	83.13	116.8
	20	T=100	82.60	75.12	79.36		79.39	0.000090	0.67	122.53	37.06	0.12	84.67	121.
	19	T=100	82.60	75.00	79.36		79.38	0.000088	0.69	119.96	34.07	0.12	79.78	113.
	18	T=100	82.60	74.31	79.36	75.44	79.38	0.000053	0.57	144.26	36.59	0.09	83.21	119.
	17	T=100	82.60	74.00	79.36		79.37	0.000047	0.53	156.06	40.86	0.09	77.15	118.
	16	T=100	82.60	73.00	79.36	74.13	79.37	0.000034	0.40	205.88	65.38	0.07	43.21	108.
	15.5		Culvert											
	15	T=100	82.60	73.00	74.67		74.90	0.002401	2.10	39.37	26.02	0.54	86.87	112.8
	14	T=100	82.60	73.00	74.13	74.13	74.66	0.009074	3.22	25.63	24.39	1.00	85.36	109.
	13	T=100	82.60	72.00	72.70	73.02	73.77	0.039144	4.60	17.96	30.62	1.92	85.81	116.
	12	T=100	82.60	71.44	72.75	72.75	73.27	0.009073	3.20	25.83	25.18	1.01	86.84	112.
	11	T=100	82.60	70.36	71.64	71.91	72.54	0.023888	4.22	19.59	26.15	1.56	92.90	119.
	10.5	T=100	82.60	68.00	68.86	69.55	71.56	0.081020	7.28	11.34	16.60	2.81	91.49	108.
	10	T=100	96.71	68.00	69.69	69.69	70.31	0.046172	3.49	27.72	22.34	1.00	88.17	110.
	6	T=100	96.71	63.59	67.47	65.04	67.52	0.001851	1.01	95.95	43.67	0.22	72.82	116.
	5	T=100	96.71	63.00	67.43		67.46	0.000798	0.68	142.45	63.11	0.14	62.87	125.
	4.5	T=100	96.71	62.34	66.64	65.45	67.34	0.010806	3.71	26.09	17.33	0.59	89.44	106.
	4.2		Bridge											
	4	T=100	96.71	62.34	65.45	65.45	66.87	0.034800	5.27	18.37	15.13	1.00	90.84	105
	3	T=100	96.71	61.00	63.72	62.64	63.85	0.005818	1.60	60.36	32.91	0.38	87.00	119
	2	T=100	96.71	61.00	63.39		63.53	0.007165	1.65	58.78	36.17	0.41	86.88	123.
	1	T=100	96.71	61.00	62.85	62.46	63.09	0.020001	2.17	44.57	39.41	0.65	67.84	107.


APRC	APROBADO DEFINITIVAMENTE
	Según Acuerdo de la CTOTU
	2 FEBRERO 2023
Junta de Andalucía	Delegación Territorial de Fomento, Articulación del Territorio y Vivienda en Almería
Firma electrón	Firma electrónica: EL JEFE DEL SERVICIO DE URBANISMO


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 50/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/ver	rificarFirma


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 51/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	:://ws050.juntadeandalucia.es/verificarf	Firma


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 52/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	:://ws050.juntadeandalucia.es/verificarf	Firma


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 53/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	:://ws050.juntadeandalucia.es/verificarf	Firma

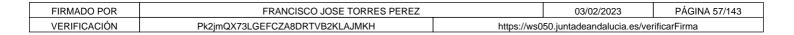
FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 54/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	:://ws050.juntadeandalucia.es/verificarf	Firma

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 55/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	:://ws050.juntadeandalucia.es/verificarl	Firma

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 56/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	:://ws050.juntadeandalucia.es/verificarf	Firma

APROBADO DEFINITIVAMENTE

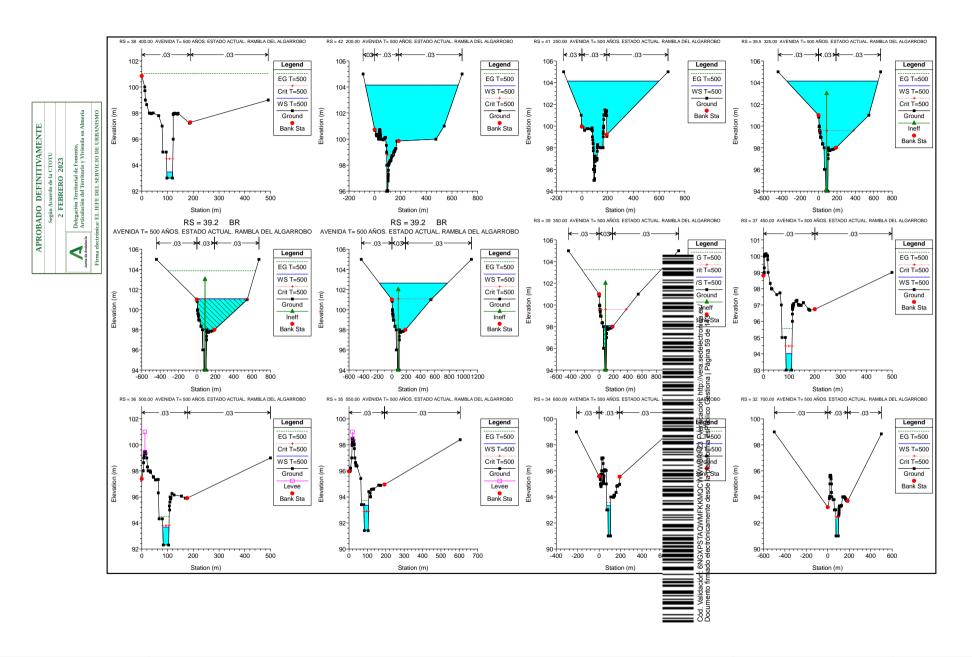
Según Acuerdo de la CTOTU

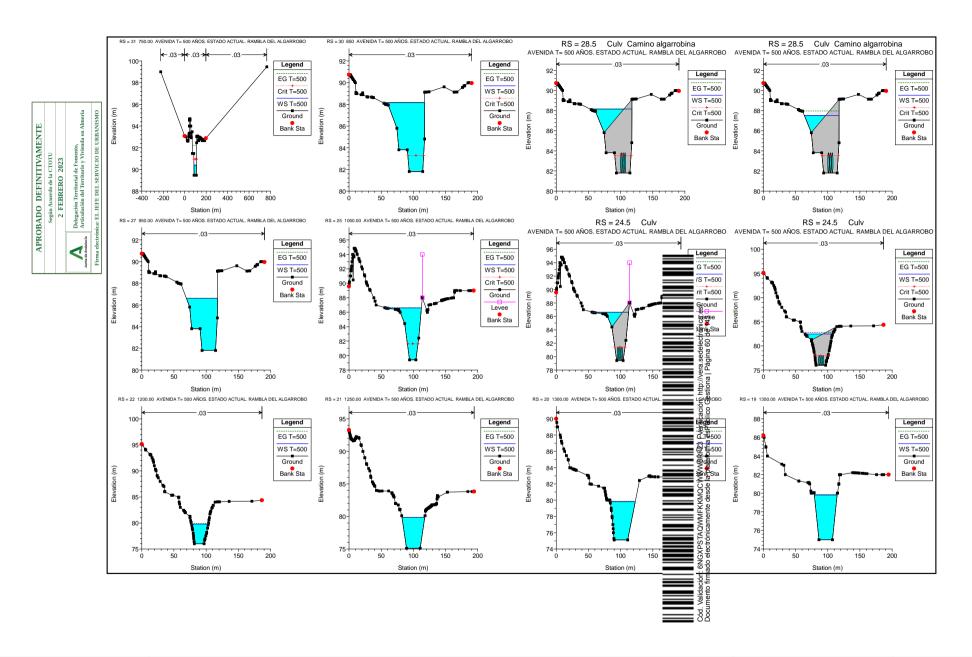

2 FEBRERO 2023

Delegación Territorial de Fomento,
Junna de Acudical

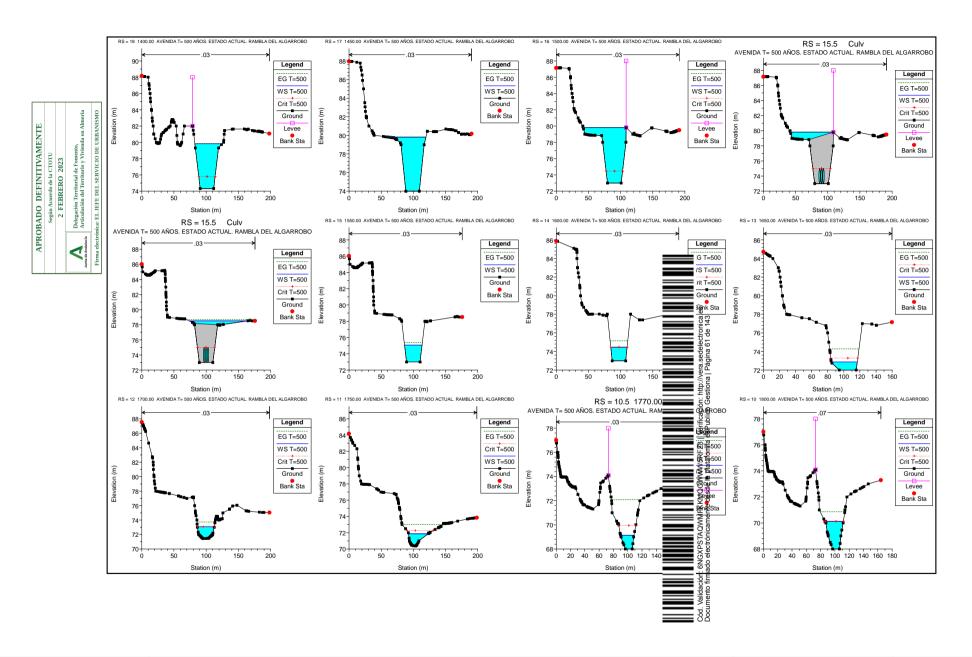
Articulación del Territorio y Vivienda en Almeria
Firma electrónica: EL JEPE DEL SERVICIO DE URBANISMO

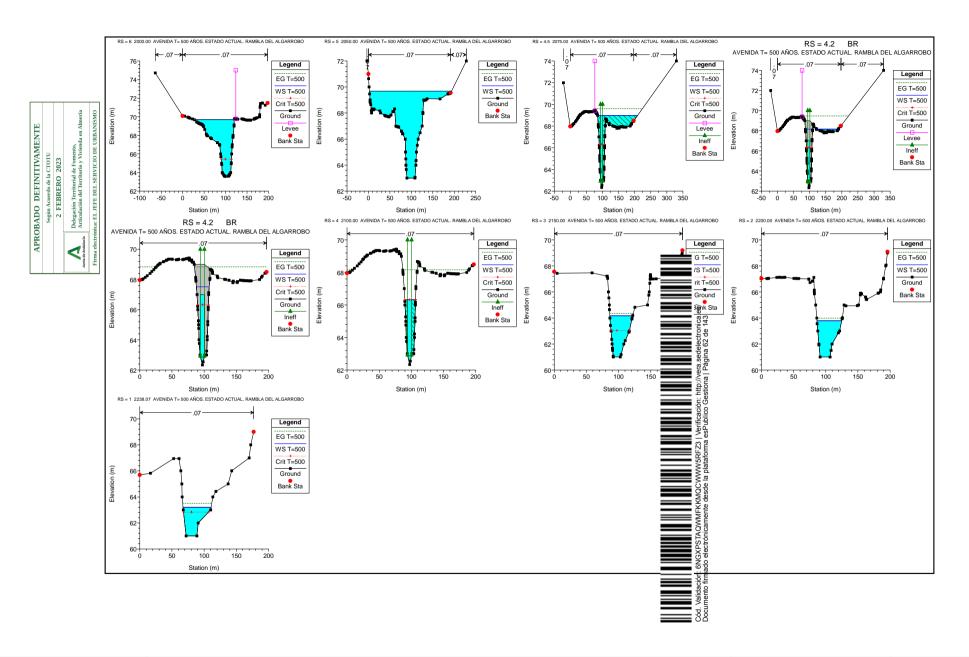
AVENIDA T = 500 AÑOS

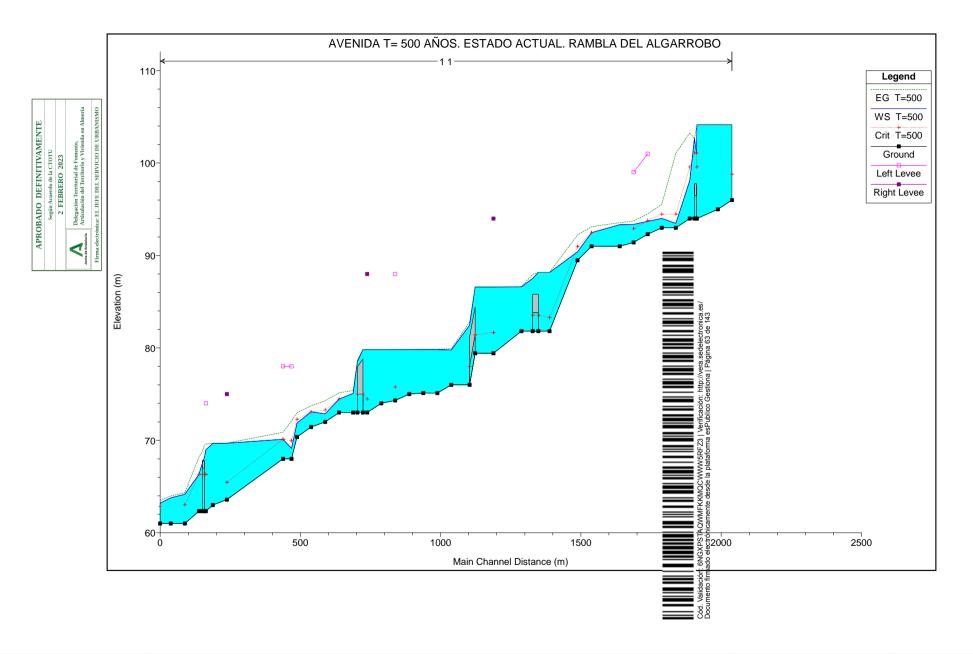


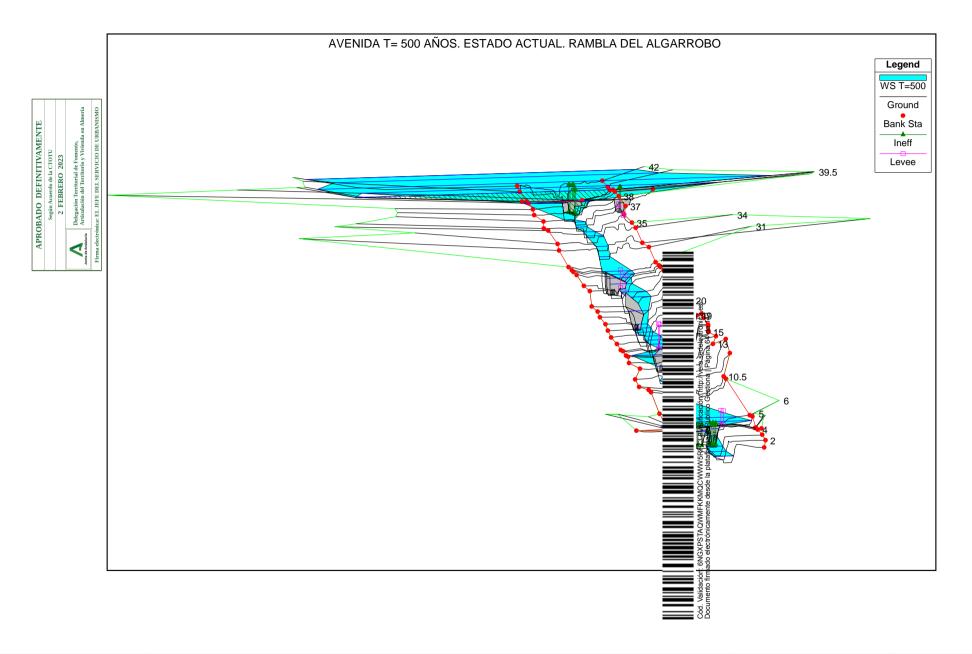

HEC-RAS	Plan: 18	River: 1	Reach: 1	Profile: T=500

		Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	Sta W.S. Lft	Sta W.S. Rgt
					(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)		(m)	(m)
		1	42	T=500	123.79	96.00	104.15	98.80	104.15	0.000000	0.05	2637.59	721.51	0.01	-72.95	648.55
		1	41	T=500	123.79	95.00	104.15		104.15	0.000001	0.07	2200.00	711.85	0.01	-113.37	598.47
Τ.		1	39.5	T=500	123.79	94.00	104.15	99.58	104.15	0.000000	0.04	3613.90	994.30	0.01	-346.26	648.04
en Almería	ISMC	1	39.2		Bridge											
Pu V	BAN	1	39	T=500	123.79	94.00	98.10	99.58	103.26	0.013922	10.07	12.29	145.77	1.59	55.19	200.95
to,	SERVICIO DE URBANISMO	1	38	T=500	123.79	93.00	93.47	94.47	101.05	0.387139	12.20	10.15	22.18	5.75	97.23	119.41
Vivi	[0 D]	1	37	T=500	123.79	93.00	94.01	94.47	95.55	0.030205	5.51	22.48	23.52	1.80	86.88	110.40
de Forn	VIC	1	36	T=500	123.79	92.31	93.68	93.79	94.49	0.010837	3.97	31.15	24.43	1.12	81.18	105.61
Delegación Territorial de Fomento, Articulación Apriliorio y Vivienda	SER	1	35	T=500	123.79	91.41	93.36	92.89	93.73	0.003310	2.71	45.73	25.88	0.65	80.31	106.19
ión Territorial	DEL	1	34	T=500	123.79	91.00	93.33		93.55	0.002250	2.09	59.25	37.33	0.53	70.63	107.96
ión J	JEFE	1	32	T=500	123.79	91.00	92.47	92.47	93.12	0.008252	3.58	34.57	26.08	0.99	74.80	100.88
legac	EL.	1	31	T=500	123.79	89.47	90.40	90.95	92.23	0.039197	5.98	20.70	23.34	2.03	85.97	109.30
Ď Ā	única	1	30	T=500	123.79	81.81	88.16	83.28	88.17	0.000041	0.50	249.29	64.96	0.08	52.71	117.67
_	lectr	1	28.5		Culvert											
<	TITIA 6	1	27	T=500	123.79	81.81	86.61		86.63	0.000108	0.75	165 70	48.12	0.13	69.47	117.59
	Fi	1	25	T=500	123.79	79.42	86.59	81.64	86.62	0.000164	0.80		55.07	0.15	57.44	112.51
		1	24.5		Culvert											
		1	22	T=500	123.79	76.00	79.78		79.91	0.000622	1.61		26.12	0.30	77.20	103.32
		1	21	T=500	123.79	75.12	79.83		79.87	0.000150	0.94		_{35.12}	0.15	82.44	117.56
		1	20	T=500	123.79	75.12	79.82		79.86	0.000140	0.88		ஜ்ஜ 39.08	0.15	83.79	122.88
		1	19	T=500	123.79	75.00	79.81		79.85	0.000139	0.91		35.12 8 39.08 15 4 15 9 35.44	0.15	79.09	114.53
		1	18	T=500	123.79	74.31	79.82	75.77	79.84	0.000096	0.76		<u>5</u> 8 42.29	0.12	82.53	124.82
		1	17	T=500	123.79	74.00	79.81		79.84	0.000107	0.70		중 <u>ឌ</u> 58.39	0.13	61.17	119.56
		1	16	T=500	123.79	73.00	79.82	74.47	79.83	0.000050	0.52		88.99 Pág	0.09	41.81	108.69
		1	15.5		Culvert								//ve br			
		1	15	T=500	123.79	73.00	75.08		75.39	0.002570	2.46		製 27.25	0.58	86.26	113.50
		1	14	T=500	123.79	73.00	74.46	74.46	75.14	0.008484	3.64		j 0 25.39	1.01	84.85	110.25
		1	13	T=500	123.79	72.00	72.87	73.29	74.28	0.038175	5.26		8 32.09	1.96	84.61	116.69
		1	12	T=500	123.79	71.44	73.08	73.08	73.74	0.008450	3.60		32.09 26.52	1.01	86.27	112.79
		1	11	T=500	123.79	70.36	71.87	72.26	73.01	0.024805	4.72		30.32 18.59	1.62	92.55	122.87
		1	10.5	T=500	123.79	68.00	69.14	69.94	72.08	0.063477	7.60		18.59	2.59	90.20	108.79
		1	10	T=500	144.42	68.00	70.12	70.12	70.86	0.043316	3.82		25.29	1.00	86.04	111.83
		1	6	T=500	144.42	63.59	69.68	65.44	69.70	0.000474	0.59		<u>₹</u> 92.43	0.11	27.84	120.27
		1	5	T=500	144.42	63.00	69.67		69.68	0.000212	0.35		ວင္တိ 191.40	0.07	2.17	193.57
		1	4.5	T=500	144.42	62.34	68.98	66.32	69.60	0.005198	3.49		호 124.47	0.44	84.56	209.03
		1	4.2		Bridge								MF			
		1	4	T=500	144.42	62.34	66.32	66.32	68.16	0.031743	6.01		₹ 8 16.75	1.00	89.77	106.52
		1	3	T=500	144.42	61.00	64.17	63.03	64.36	0.006803	1.91		<u>₹</u> 35.65	0.42	86.35	122.00
		1	2	T=500	144.42	61.00	63.78		63.98	0.008318	1.97		38.42	0.46	86.35	124.77
		1	1	T=500	144.42	61.00	63.20	62.82	63.50	0.020000	2.45		등 43.57	0.67	67.19	110.76
													firma firma			

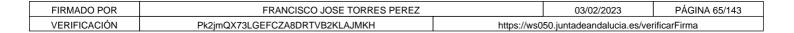

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 58/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	://ws050.juntadeandalucia.es/verificarF	Firma


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 59/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	:://ws050.juntadeandalucia.es/verificarl	Firma


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 60/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	s://ws050.juntadeandalucia.es/verificarl	Firma


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 61/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	:://ws050.juntadeandalucia.es/verificarl	Firma

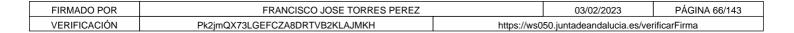
FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 62/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	:://ws050.juntadeandalucia.es/verificarf	Firma


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 63/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	:://ws050.juntadeandalucia.es/verificarl	Firma

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 64/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	s://ws050.juntadeandalucia.es/verificarl	Firma

ESTADO FUTURO

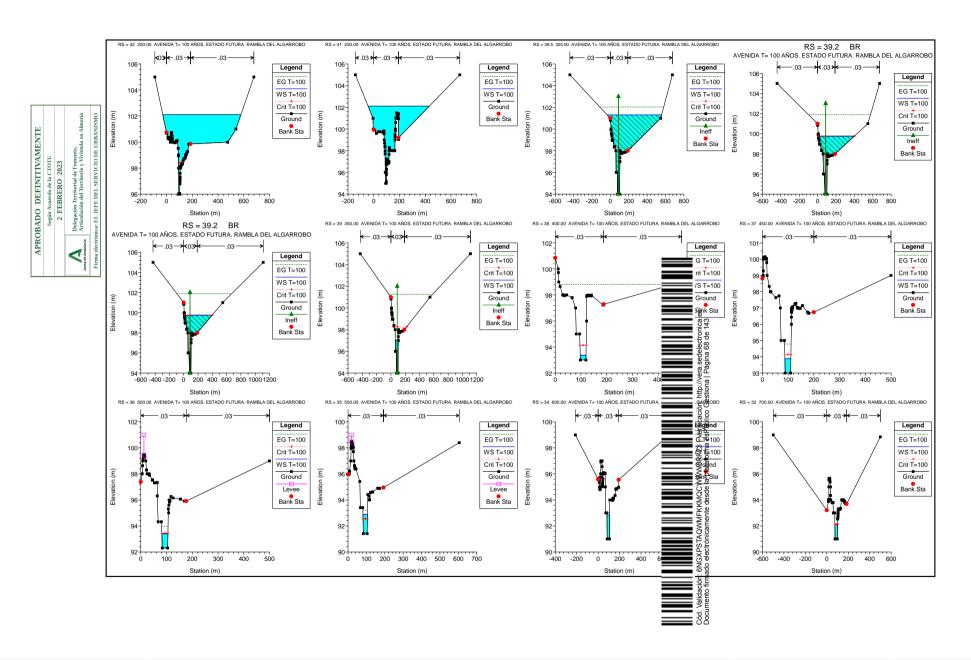
APROBADO DEFINITIVAMENTE

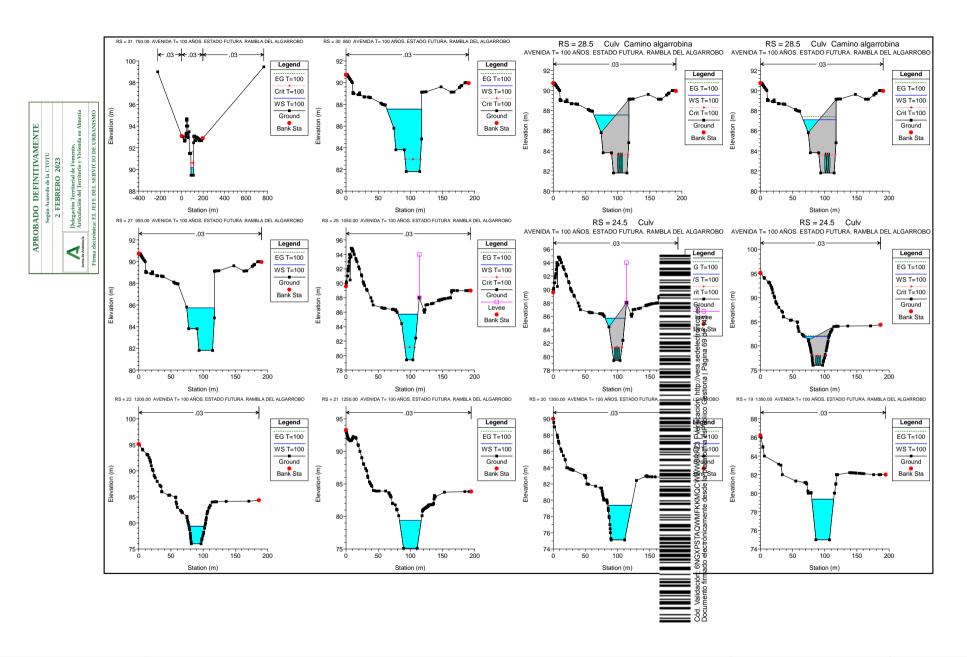

Según Acuerdo de la CTOTU

2 FEBRERO 2023

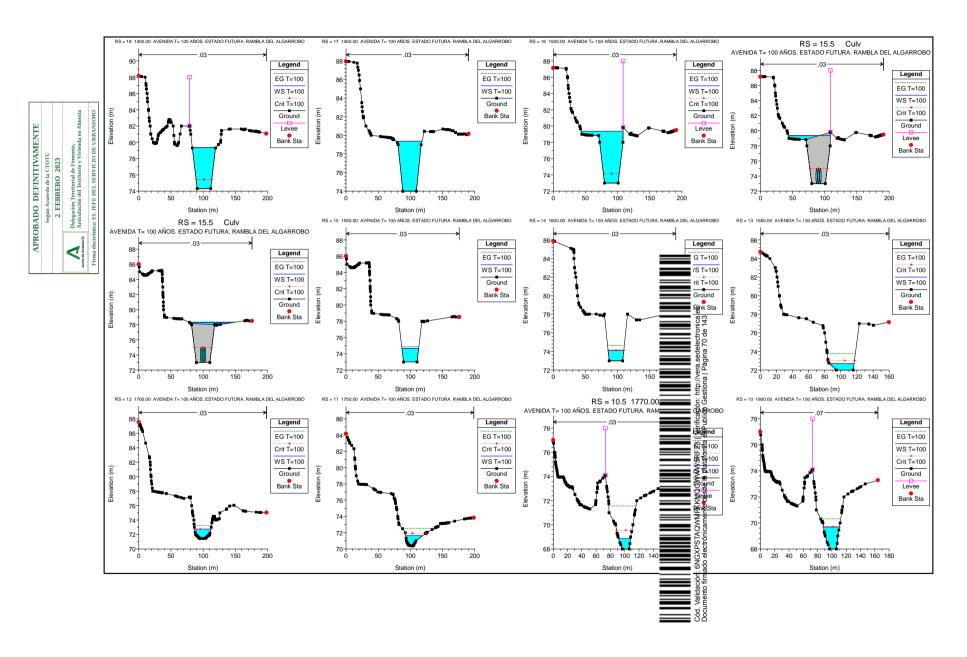
Delegación Territorial de Fomento,
Junta de Actionica: EL JEFE DEL SERVICIO DE URBANISMO

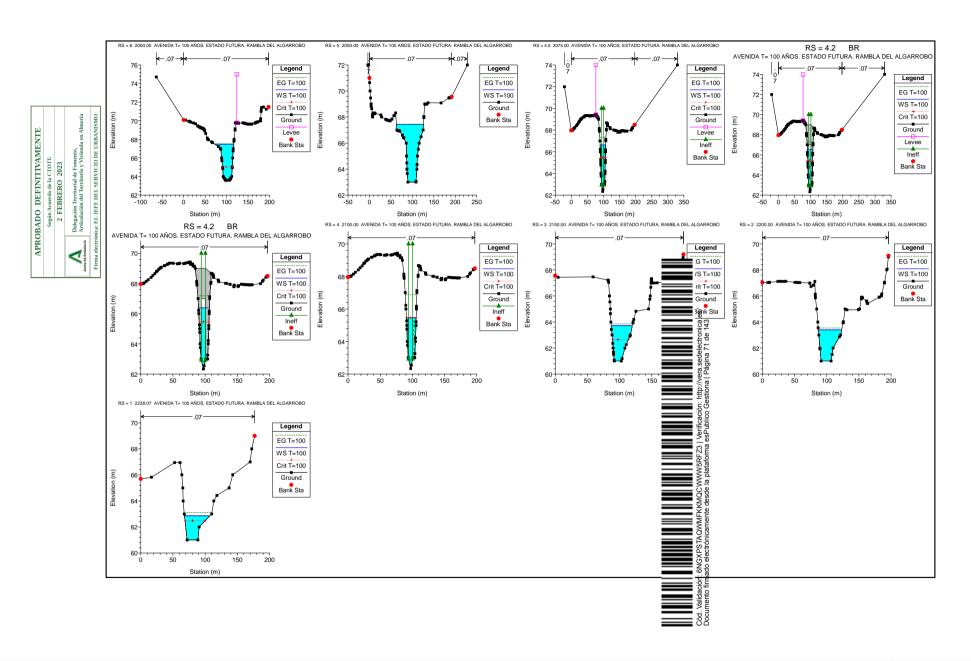
Firma electrónica: EL JEFE DEL SERVICIO DE URBANISMO

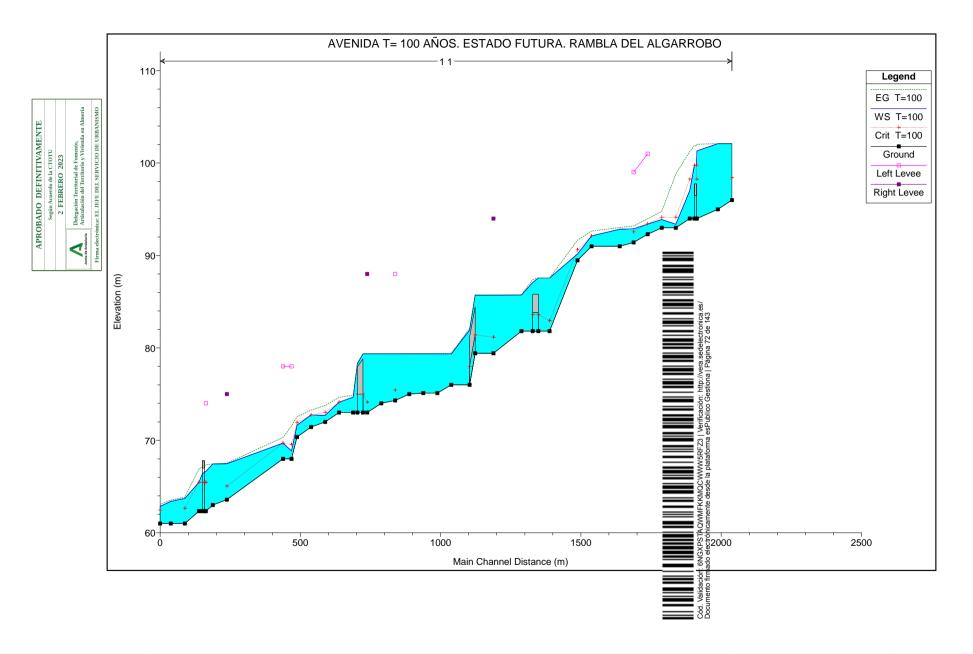

AVENIDA T = 100 AÑOS

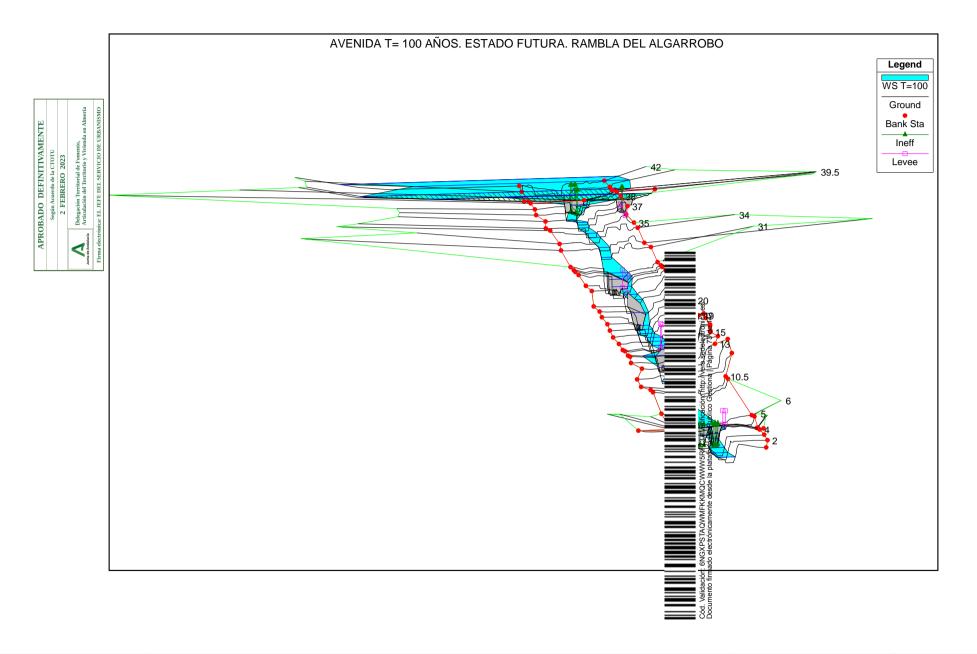

	D: D: 10			D (1) T 100
HEC-RAS	Plan: Plan 18	River: 1	Reach: 1	Profile: T=100

		Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	Sta W.S. Lft	Sta W.S. Rgt
					(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)		(m)	(m)
		1	42	T=100	82.60	96.00	102.10	98.43	102.10	0.000001	0.07	1281.45	606.76	0.01	-29.33	577.43
		1	41	T=100	82.60	95.00	102.10		102.10	0.000002	0.10	988.32	474.82	0.02	-43.67	431.15
		1	39.5	T=100	82.60	94.00	101.31	98.26	102.03	0.000901	3.77	21.92	590.67	0.44	-33.80	556.86
	SMC	1	39.2		Bridge											
	en Al	1	39	T=100	82.60	94.00	97.02	98.26	101.26	0.017143	9.12	9.06	41.83	1.67	60.96	102.79
6	Tritorio y Vivienda en Almeria SERVICIO DE URBANISMO	1	38	T=100	82.60	93.00	93.37	94.13	98.81	0.374711	10.33	8.00	21.93	5.46	97.38	119.31
ment	VIVIO O DE	1	37	T=100	82.60	93.00	93.89	94.13	94.78	0.020204	4.18	19.77	23.23	1.45	87.05	110.28
de Fom	VICI	1	36	T=100	82.60	92.31	93.40	93.44	93.99	0.010504	3.40	24.31	23.72	1.07	81.61	105.33
	SER	1	35	T=100	82.60	91.41	92.88	92.55	93.19	0.003804	2.46	33.62	24.68	0.67	81.03	105.71
r EBRERO	del 16	1	34	T=100	82.60	91.00	92.84		93.03	0.001809	1.93	42.77	25.59	0.48	81.88	107.47
ión T	IEFE	1	32	T=100	82.60	91.00	92.12	92.12	92.65	0.009177	3.21	25.72	24.88	1.01	75.32	100.20
legac	ticul	1	31	T=100	82.60	89.47	90.17	90.61	91.66	0.046504	5.42	15.23	22.74	2.12	86.33	109.07
De	nica Ar	1	30	T=100	82.60	81.81	87.56	82.94	87.57	0.000024	0.38	214.78	54.22	0.06	63.41	117.64
	atucia lectro	1	28.5		Culvert											
<	de And Tha e	1	27	T=100	82.60	81.81	85.73		85.75	0.000102	0.66	125.80	42.92	0.12	74.62	117.54
	Fir	1	25	T=100	82.60	79.42	85.71	81.16	85.74	0.000078	0.68		30.97	0.11	80.69	111.66
		1	24.5		Culvert											
		1	22	T=100	82.60	76.00	79.34		79.42	0.000434	1.26		24.79	0.25	77.91	102.71
		1	21	T=100	82.60	75.12	79.36		79.39	0.000096	0.71		33.73	0.12	83.13	116.87
		1	20	T=100	82.60	75.12	79.36		79.39	0.000090	0.67		ენი 37.06	0.12	84.67	121.72
		1	19	T=100	82.60	75.00	79.36		79.38	0.000088	0.69		37.06 34.07 36.59 36.59	0.12	79.78	113.84
		1	18	T=100	82.60	74.31	79.36	75.44	79.38	0.000053	0.57		36.59	0.09	83.21	119.80
		1	17	T=100	82.60	74.00	79.36		79.37	0.000047	0.53		등 40.86	0.09	77.15	118.01
		1	16	T=100	82.60	73.00	79.36	74.13	79.37	0.000034	0.40		g 65.38	0.07	43.21	108.59
		1	15.5		Culvert								98.08 65.38 65.38			
		1	15	T=100	82.60	73.00	74.67		74.90	0.002401	2.10		登 26.02	0.54	86.87	112.89
		1	14	T=100	82.60	73.00	74.13	74.13	74.66	0.009074	3.22		<u>50</u> 24.39	1.00	85.36	109.74
		1	13	T=100	82.60	72.00	72.70	73.02	73.77	0.039144	4.60		8 € 30.62	1.92	85.81	116.43
		1	12	T=100	82.60	71.44	72.75	72.75	73.27	0.009073	3.20		造 25.18	1.01	86.84	112.02
		1	11	T=100	82.60	70.36	71.64	71.91	72.54	0.023888	4.22		25.18 Verification 16.60	1.56	92.90	119.05
		1	10.5	T=100	82.60	68.00	68.86	69.55	71.56	0.081020	7.28		[보통 16.60	2.81	91.49	108.09
		1	10	T=100	96.86	68.00	69.69	69.69	70.32	0.046146	3.49		22.35	1.00	88.17	110.52
		1	6	T=100	96.86	63.59	67.48	65.04	67.53	0.001852	1.01		<u>≷ a</u> 43.81	0.22	72.69	116.50
		1	5	T=100	96.86	63.00	67.44		67.46	0.000795	0.68		성 등 63.13	0.14	62.86	125.99
		1	4.5	T=100	96.86	62.34	66.64	65.46	67.34	0.010812	3.71		Opg 63.13 What 17.34 Had 17.34	0.59	89.44	106.78
		1	4.2		Bridge								A THE			
		1	4	T=100	96.86	62.34	65.46	65.46	66.87	0.034718	5.26		₹ 8 15.14	1.00	90.84	105.97
		1	3	T=100	96.86	61.00	63.72	62.64	63.86	0.005821	1.60		<u> </u>	0.38	86.99	119.91
		1	2	T=100	96.86	61.00	63.39		63.53	0.007168	1.65		36.18	0.41	86.87	123.06
		1	1	T=100	96.86	61.00	62.86	62.46	63.10	0.020001	2.17		ල්ම සුපි 39.44	0.65	67.84	107.28
						'	'	'	'	'			ción:	-	1	


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 67/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 68/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	:://ws050.juntadeandalucia.es/verificarl	Firma


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 69/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https	:://ws050.juntadeandalucia.es/verificarl	Firma


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 70/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 71/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 72/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		

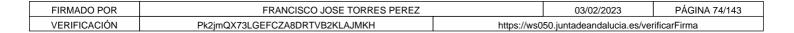
FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 73/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		

Es copia auténtica de documento electrónico

APROBADO DEFINITIVAMENTE

Según Acuerdo de la CIOTU

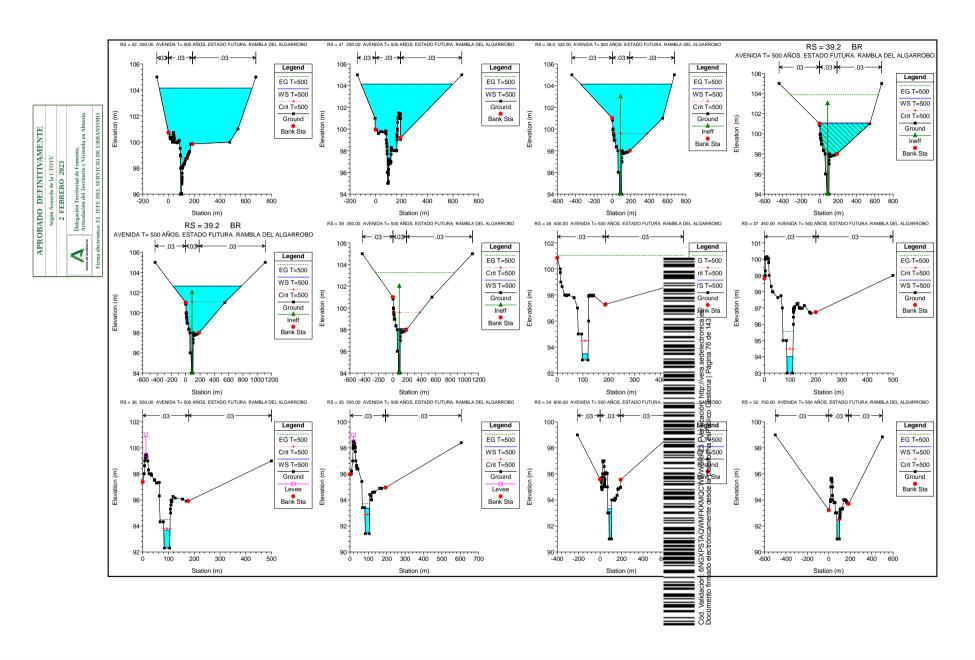
2 FEBRERO 2023


2 FEBRERO 2023

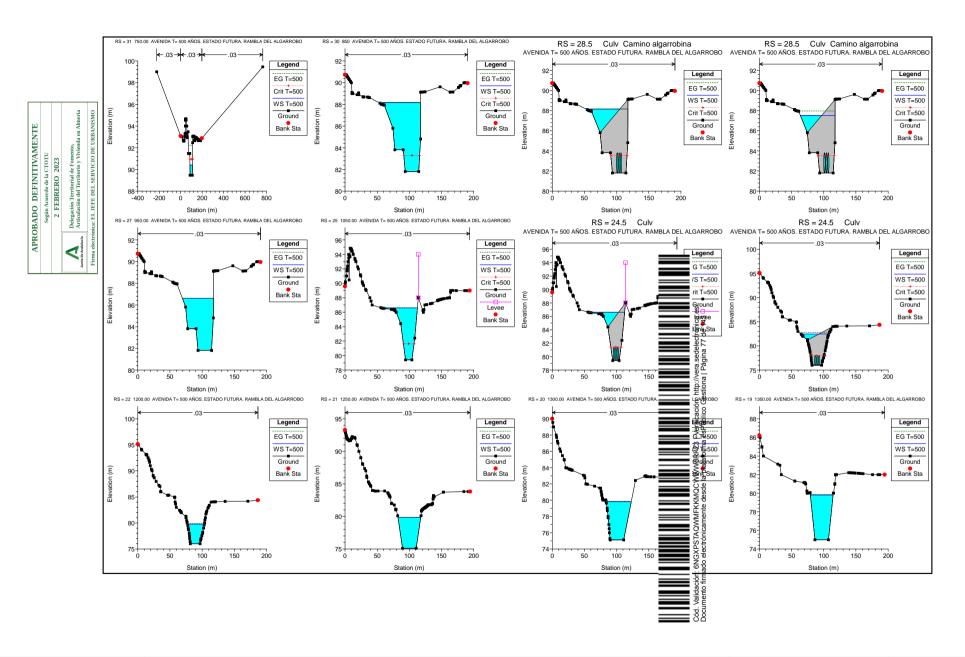
Articulación del Territorial de Fomento,
Articulación del Territorio y Uviende en Almeria

Firma electrónica: EL JEFE DEL SERVICIO DE URBANISMO

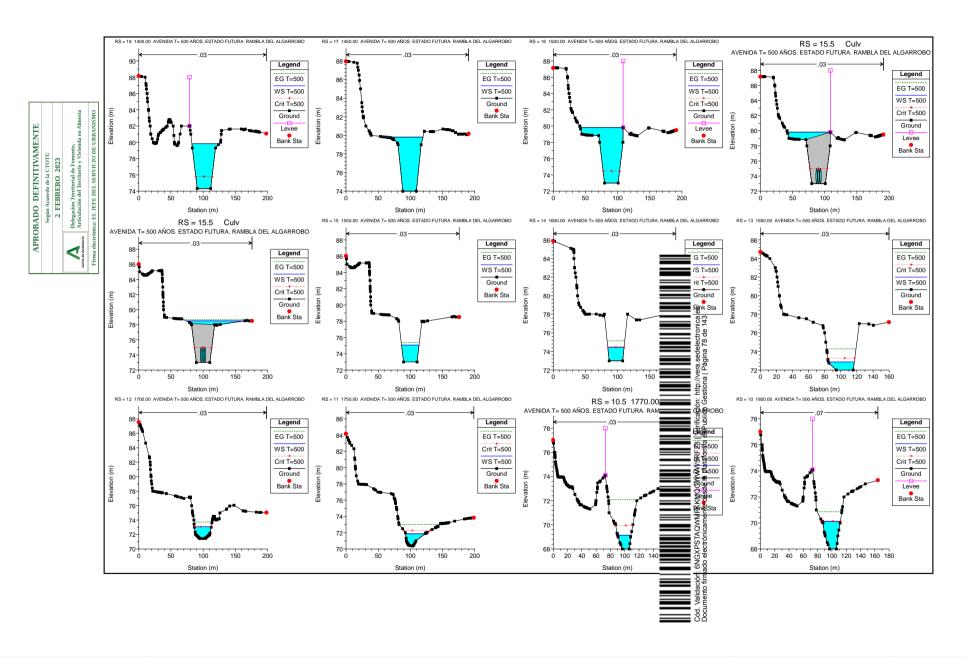
AVENIDA T = 500 AÑOS

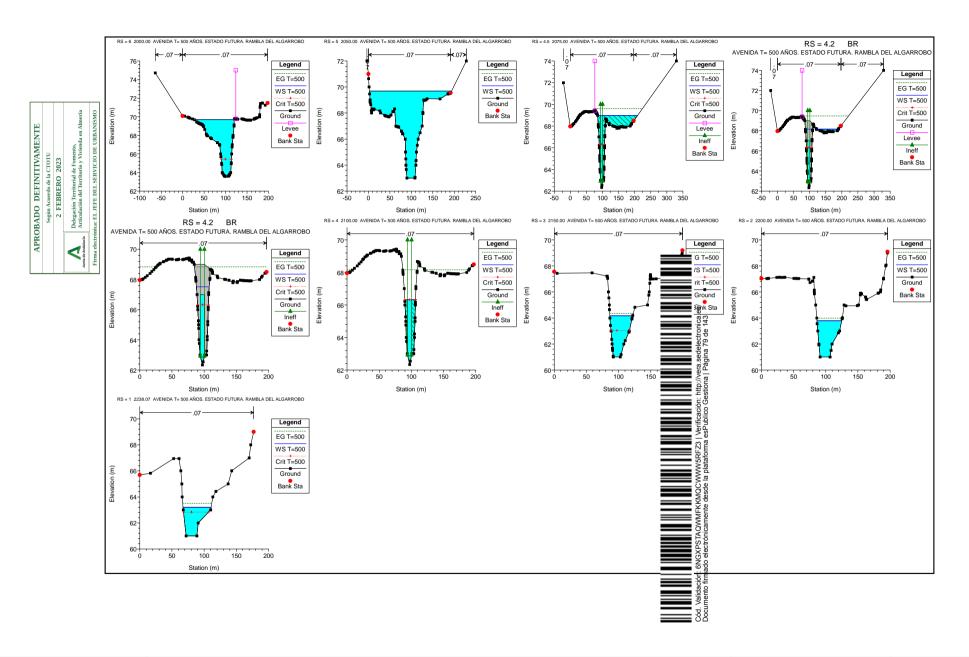

HEC-RAS Plan: Plan 18 River: 1 Reach: 1 Profile	: T=500
---	---------

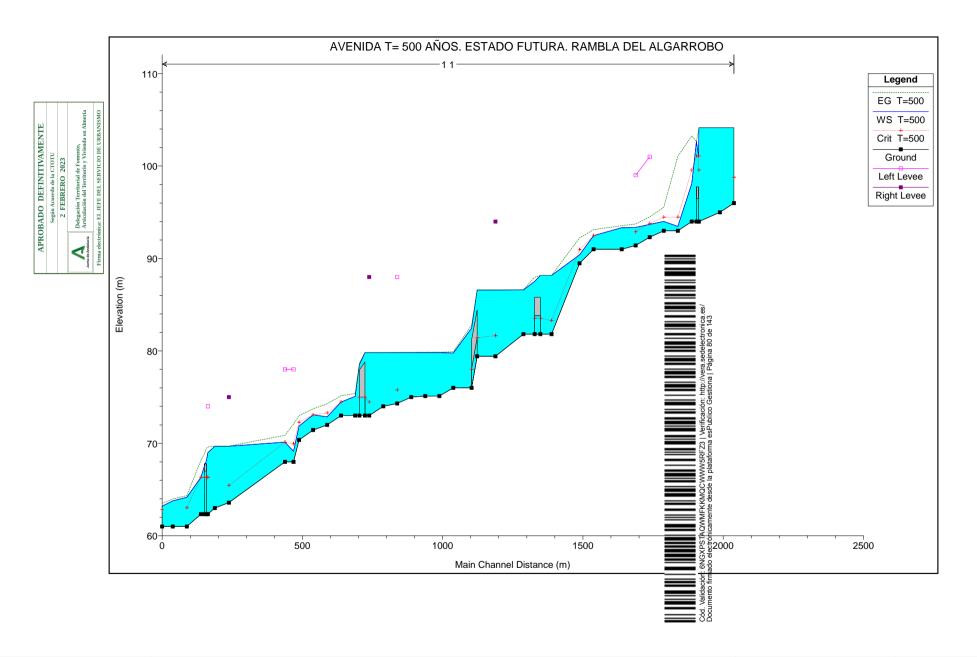
Delegación Territorial de Fomento, a se molaucia Articulación del Territorio y Vivienda en Almeria

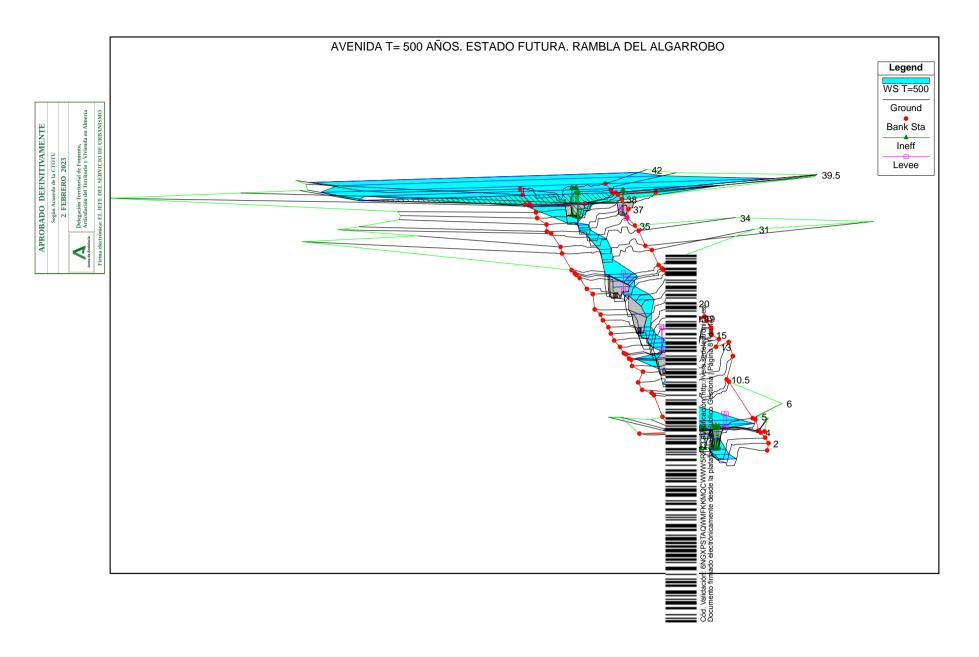

APROBADO DEFINITIVAMENTE
Según Acuerdo de la CTOTU
2 FEBRERO 2023

	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	Sta W.S. Lft	Sta W.S. Rgt
				(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)		(m)	(m)
1		42	T=500	123.79	96.00	104.15	98.80	104.15	0.000000	0.05	2637.59	721.51	0.01	-72.95	648.55
1		41	T=500	123.79	95.00	104.15		104.15	0.000001	0.07	2200.00	711.85	0.01	-113.37	598.47
_ [1		39.5	T=500	123.79	94.00	104.15	99.58	104.15	0.000000	0.04	3613.90	994.30	0.01	-346.26	648.04
SMC		39.2		Bridge											
BAN 1		39	T=500	123.79	94.00	98.10	99.58	103.26	0.013922	10.07	12.29	145.77	1.59	55.19	200.95
Firma electrónica: EL JEFE DEL SERVICIO DE URBANISMO		38	T=500	123.79	93.00	93.47	94.47	101.05	0.387139	12.20	10.15	22.18	5.75	97.23	119.41
0 1		37	T=500	123.79	93.00	94.01	94.47	95.55	0.030205	5.51	22.48	23.52	1.80	86.88	110.40
NICI		36	T=500	123.79	92.31	93.68	93.79	94.49	0.010837	3.97	31.15	24.43	1.12	81.18	105.61
SER 1		35	T=500	123.79	91.41	93.36	92.89	93.73	0.003310	2.71	45.73	25.88	0.65	80.31	106.19
DEI 1		34	T=500	123.79	91.00	93.33		93.55	0.002250	2.09	59.25	37.33	0.53	70.63	107.96
EFE 1		32	T=500	123.79	91.00	92.47	92.47	93.12	0.008252	3.58	34.57	26.08	0.99	74.80	100.88
E 1		31	T=500	123.79	89.47	90.40	90.95	92.23	0.039197	5.98	20.70	23.34	2.03	85.97	109.30
1 Inica		30	T=500	123.79	81.81	88.16	83.28	88.17	0.000041	0.50	249.29	64.96	0.08	52.71	117.67
lectro		28.5		Culvert											
ma e		27	T=500	123.79	81.81	86.61		86.63	0.000108	0.75	165.70	48.12	0.13	69.47	117.59
^E 1		25	T=500	123.79	79.42	86.59	81.64	86.62	0.000164	0.80		55.07	0.15	57.44	112.51
_ [1		24.5		Culvert											
1		22	T=500	123.79	76.00	79.78		79.91	0.000622	1.61		26.12	0.30	77.20	103.32
1		21	T=500	123.79	75.12	79.83		79.87	0.000150	0.94		<u></u> 35.12	0.15	82.44	117.56
1		20	T=500	123.79	75.12	79.82		79.86	0.000140	0.88		<u>ğ</u> უ 39.08	0.15	83.79	122.88
1		19	T=500	123.79	75.00	79.81		79.85	0.000139	0.91		<u>ξ</u> 35.44	0.15	79.09	114.53
1		18	T=500	123.79	74.31	79.82	75.77	79.84	0.000096	0.76		42.29	0.12	82.53	124.82
1		17	T=500	123.79	74.00	79.81		79.84	0.000107	0.70		<u> </u>	0.13	61.17	119.56
1		16	T=500	123.79	73.00	79.82	74.47	79.83	0.000050	0.52		88.86 gi	0.09	41.81	108.69
1		15.5		Culvert								a			
1		15	T=500	123.79	73.00	75.08		75.39	0.002570	2.46		全 27.25	0.58	86.26	113.50
1		14	T=500	123.79	73.00	74.46	74.46	75.14	0.008484	3.64		<u>ූ</u> පූර් 25.39	1.01	84.85	110.25
1		13	T=500	123.79	72.00	72.87	73.29	74.28	0.038175	5.26		<u> </u>	1.96	84.61	116.69
1		12	T=500	123.79	71.44	73.08	73.08	73.74	0.008450	3.60		26.52	1.01	86.27	112.79
1		11	T=500	123.79	70.36	71.87	72.26	73.01	0.024805	4.72		<u>20 0</u> 30.32	1.62	92.55	122.87
1		10.5	T=500	123.79	68.00	69.14	69.94	72.08	0.063477	7.60		18.59	2.59	90.20	108.79
1		10	T=500	144.57	68.00	70.13	70.13	70.86	0.043922	3.80		25.99	1.00	85.86	111.86
1		6	T=500	144.57	63.59	69.69	65.44	69.71	0.000474	0.59		<u>§ ®</u> 92.81	0.11	27.47	120.28
1		5	T=500	144.57	63.00	69.68		69.69	0.000211	0.35		응 191.52	0.07	2.15	193.67
1		4.5	T=500	144.57	62.34	68.99	66.32	69.61	0.005190	3.49		호형 124.65	0.44	84.54	209.19
1		4.2		Bridge								en ti			
1		4	T=500	144.57	62.34	66.32	66.32	68.17	0.031813	6.02		<u>ਨੂੰ </u>	1.00	89.77	106.52
1		3	T=500	144.57	61.00	64.17	63.04	64.36	0.006806	1.91		35.65	0.42	86.35	122.00
1		2	T=500	144.57	61.00	63.78		63.98	0.008322	1.97		38.43	0.46	86.35	124.77
1		1	T=500	144.57	61.00	63.20	62.82	63.50	0.020020	2.45		중 43.57	0.67	67.19	110.76
												ción: firma			


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 75/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 76/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma			


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 77/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma			


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 78/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma			

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 79/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma			

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 80/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma			

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 81/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma			

Es copia auténtica de documento electrónico

APROBADO DEFINITIVAMENTE

Según Acuerdo de la CTOTU

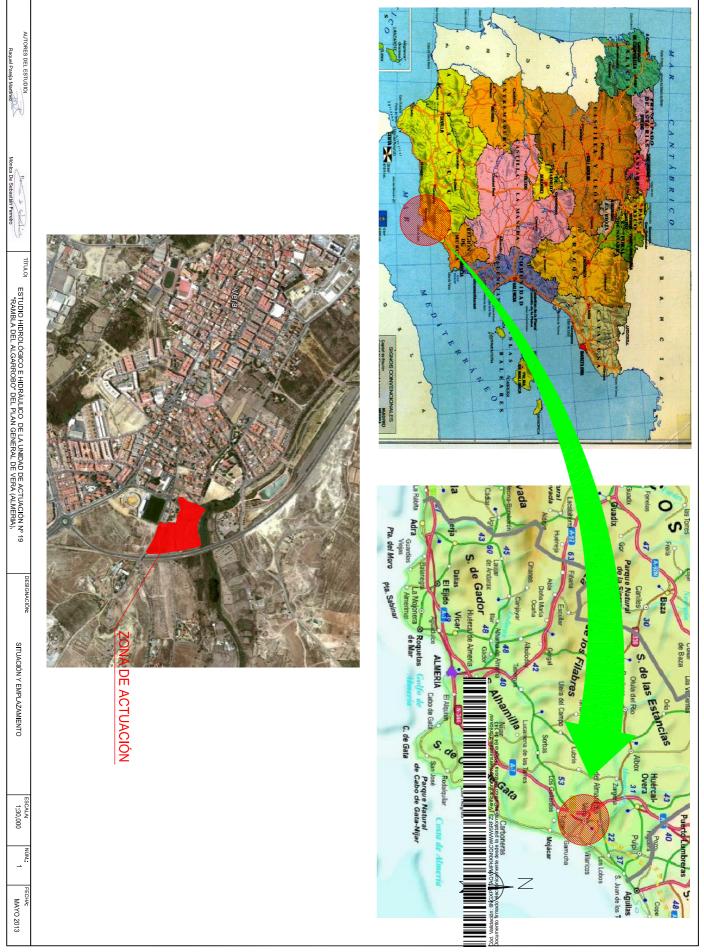
2 FEBRERO 2023

Delegación Territorial de Fomento,

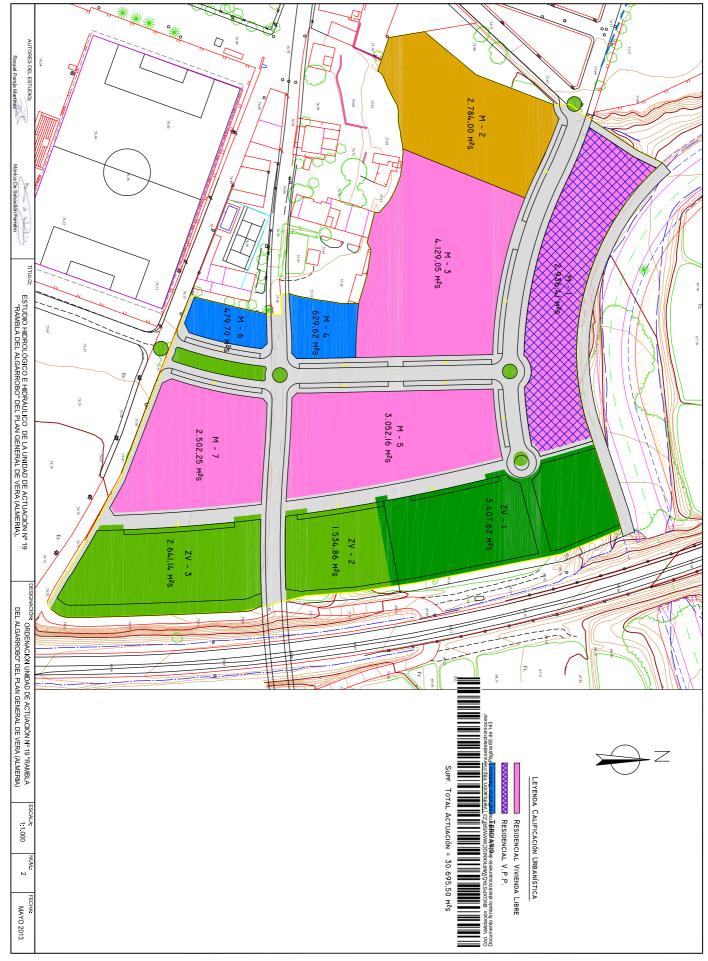
Anticulación del Territorio y Uvivienda en Almeria

Firma electrónica: EL JEFE DEL SERVICIO DE URBANISMO

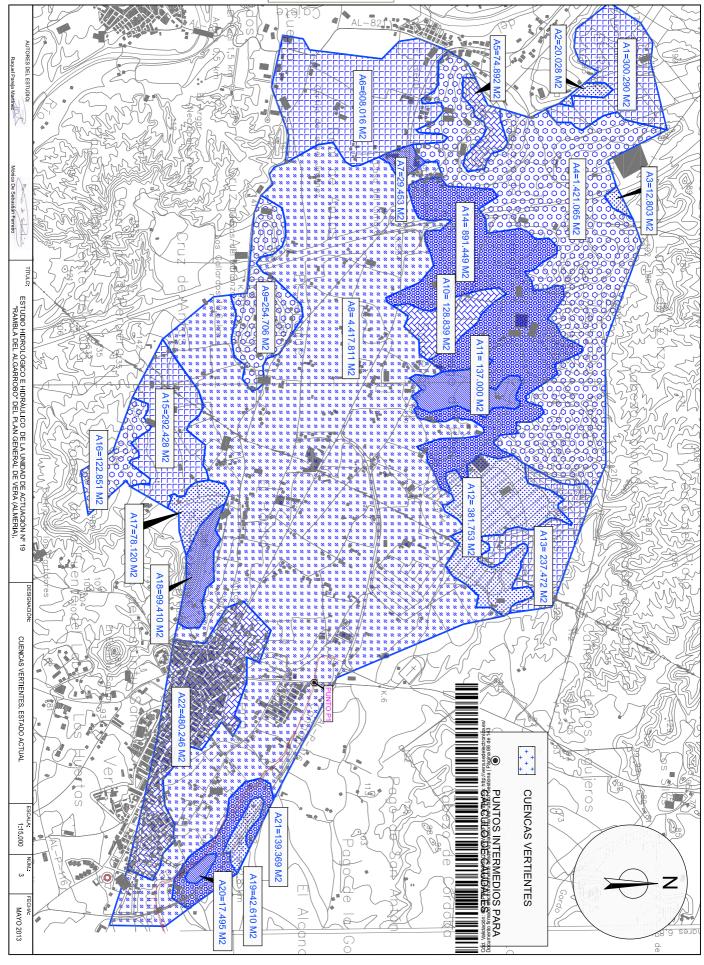
APÉNDICE 7: PLANOS


ESTUDIO HIDROLÓGICO E HIDRÁULICO DE LA UNIDAD DE ACTUACIÓN Nº 19 "RAMBLA DEL ALGARROBO" DEL PLAN GENERAL DE VERA (ALMERIA).

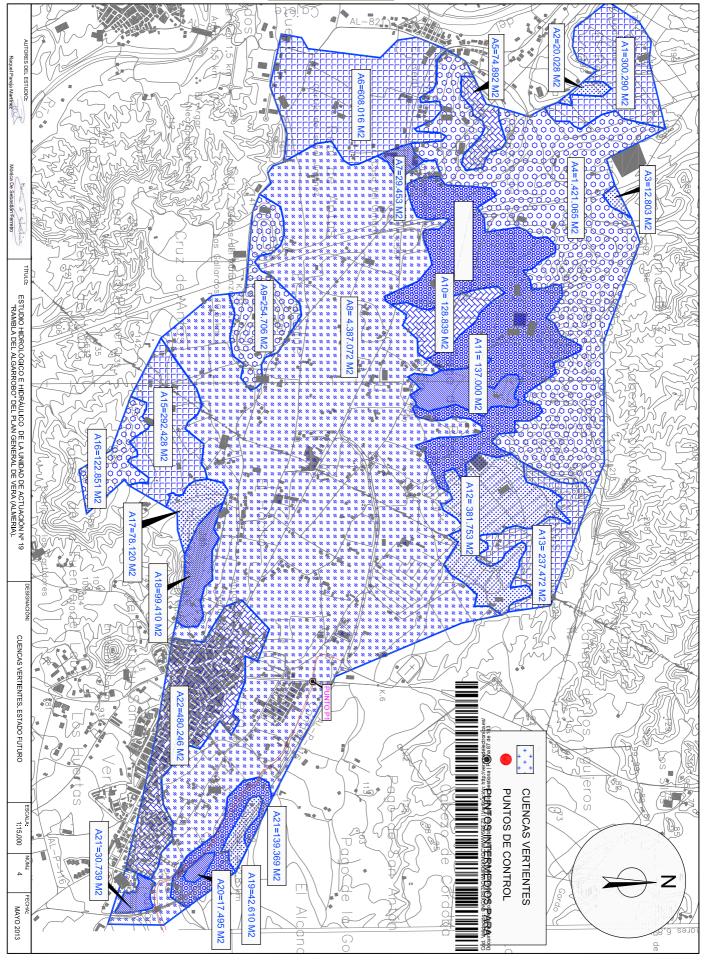
INDICE DE PLANOS

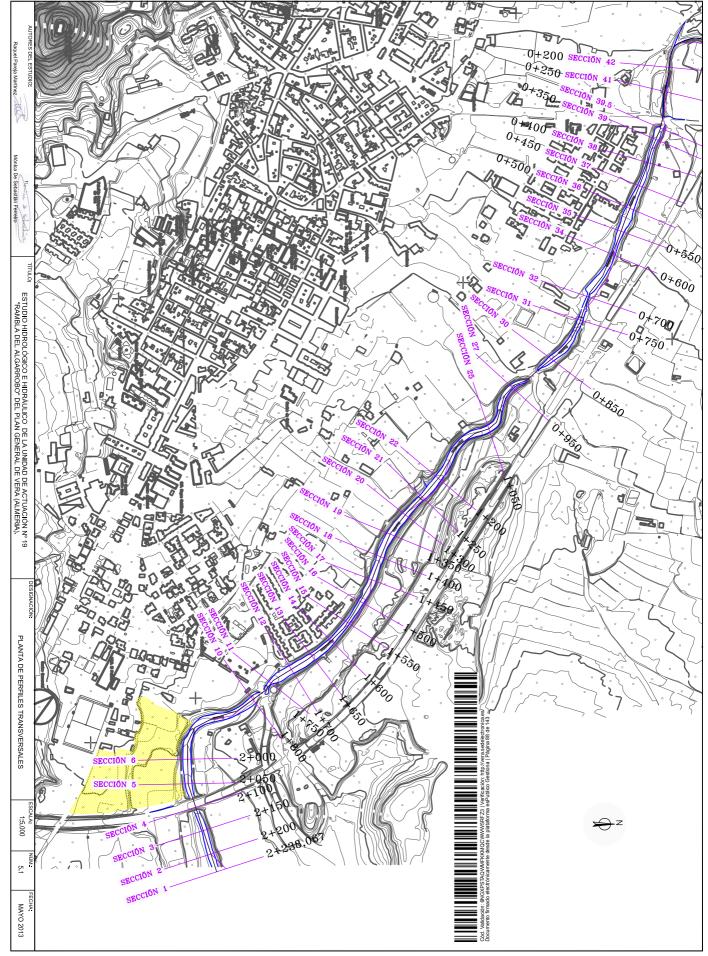

- 1.- Situación y emplazamiento
- 2.- Ordenación Unidad de Actuación nº 19 "Rambla del Algarrobo" del Plan General de Vera (Almería).
 - 3.- Cuencas vertientes. Estado actual.
 - 4.- Cuencas vertientes. Estado futuro.
 - 5.- Perfiles transversales.
 - 5.1.- Planta de perfiles transversales
 - 5.2.- Perfiles transversales
 - 6.- Llanuras de inundación. Estado actual.
 - 6.1.- Llanuras de inundación. Estado actual. Periodo de retorno de 100 años.
 - 6.2.- Llanuras de inundación. Estado actual. Periodo de retorno de 500 años.
 - 7.- Llanuras de inundación. Estado futuro.
 - 7.1.- Llanuras de inundación. Estado futuro. Periodo de retorno de 100 años.
 - 7.2.- Llanuras de inundación. Estado futuro. Periodo de retorno de 500 años.

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 84/143		
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	https://ws050.juntadeandalucia.es/verificarFirma			

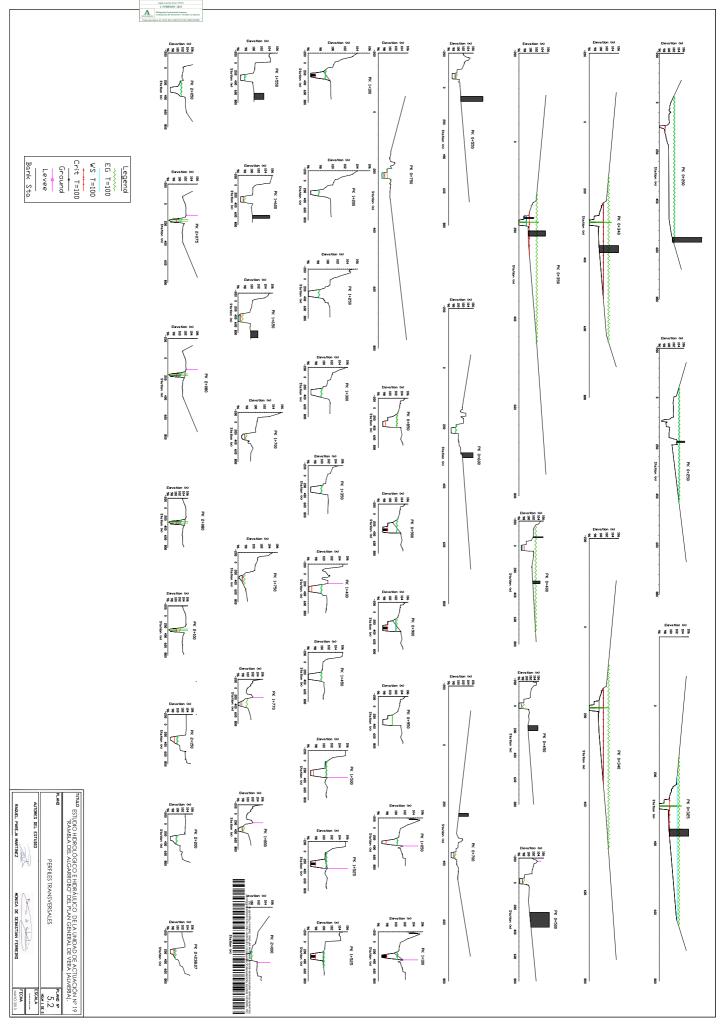


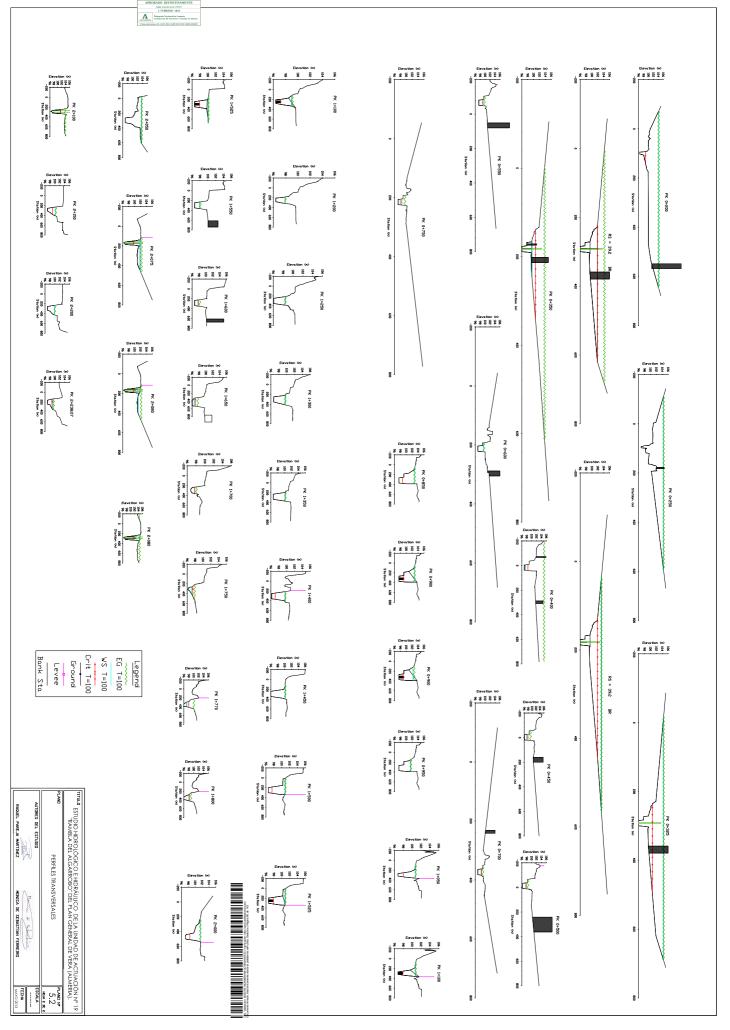
FIRM	ADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 85/143	
VERI	FICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	ttps://ws050.juntadeandalucia.es/verificarFirma		

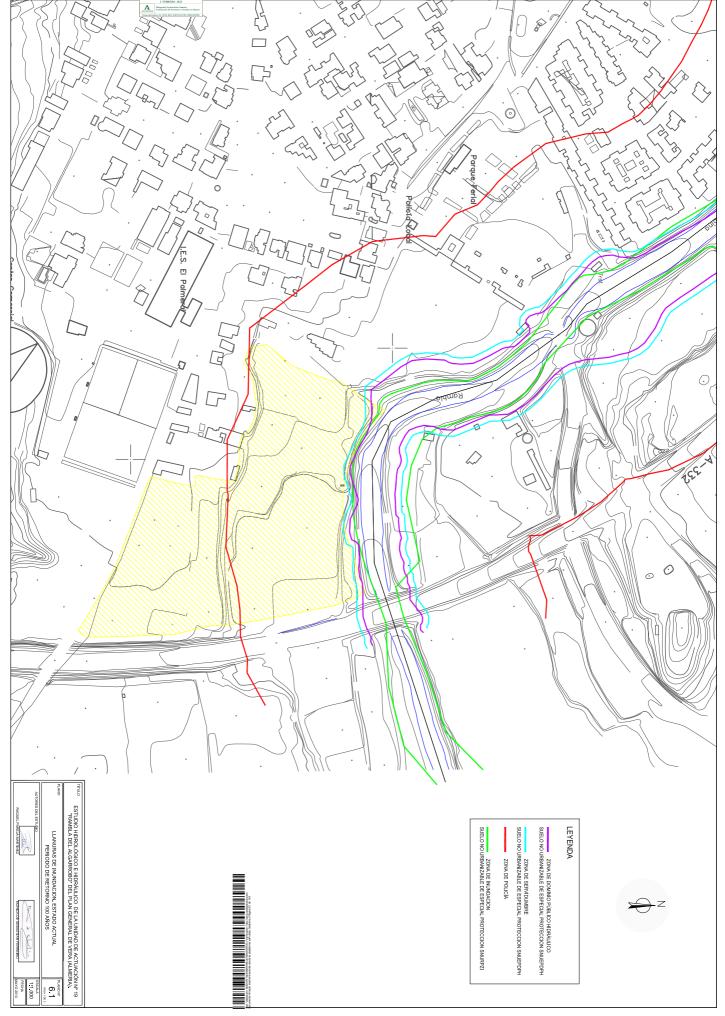


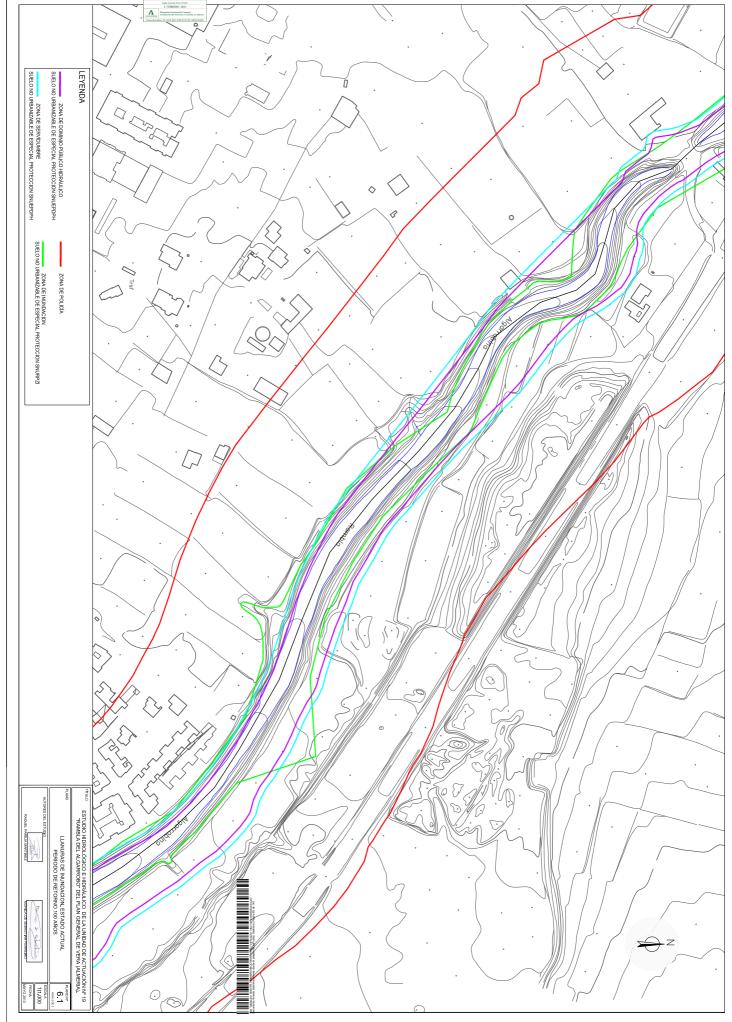


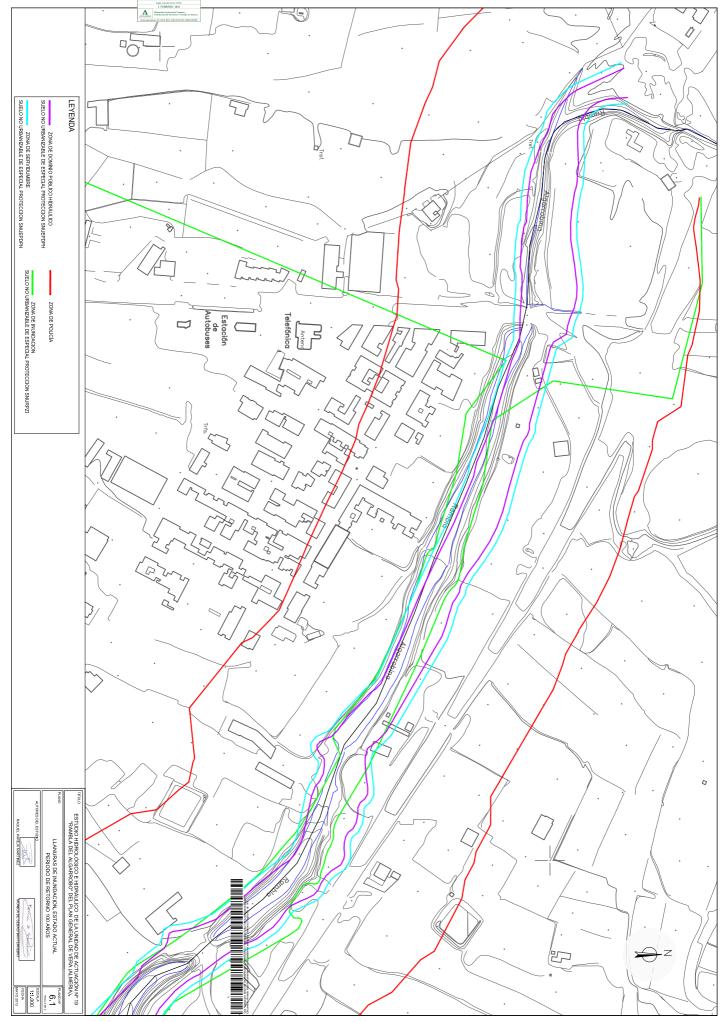
FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 86/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	https://ws050.juntadeandalucia.es/verificarFirma	

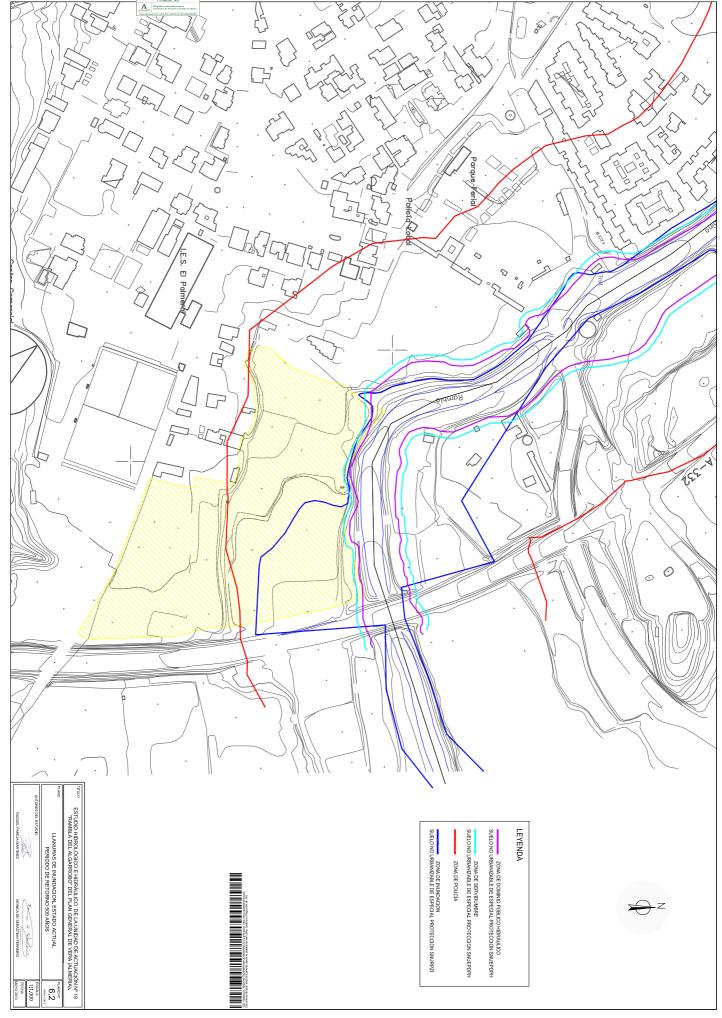


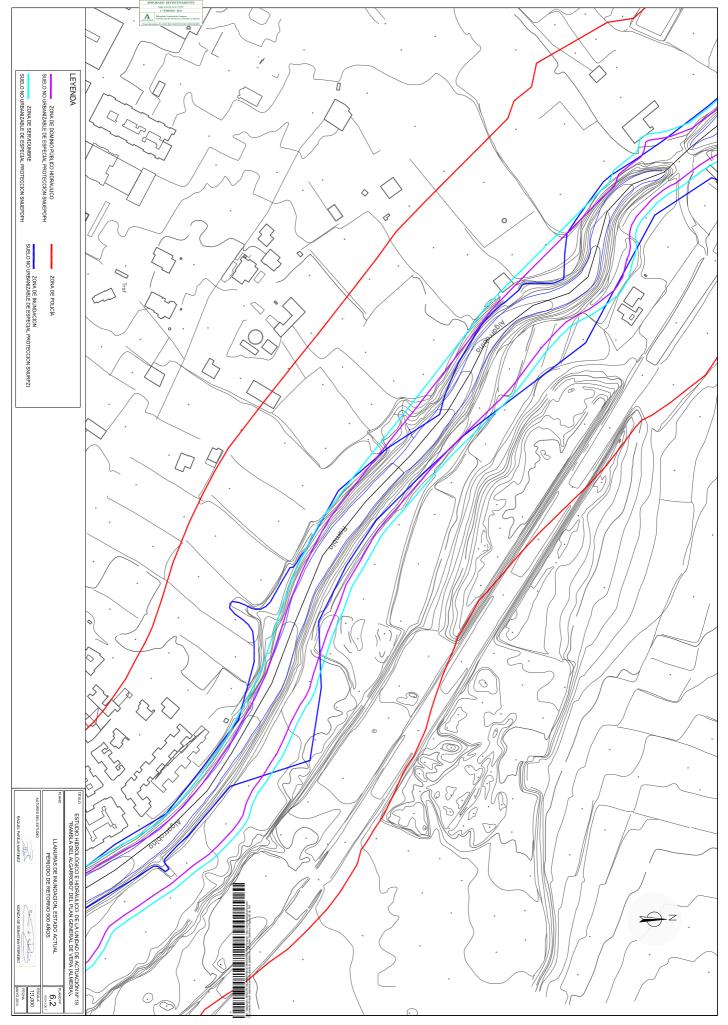

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 87/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		rificarFirma

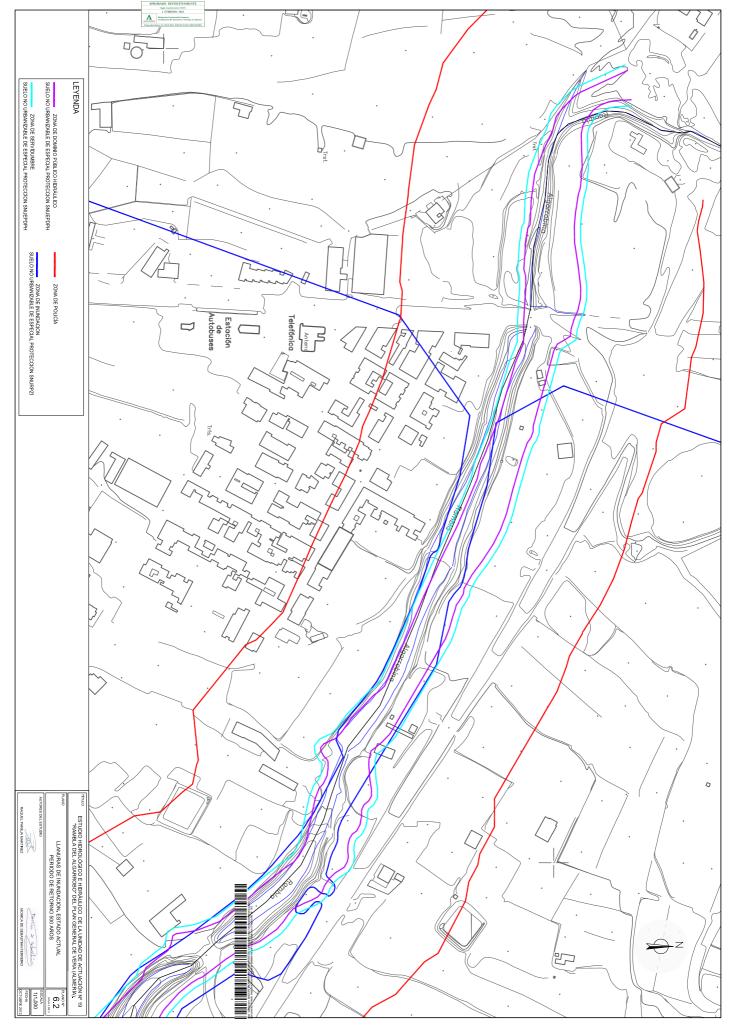

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 88/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		

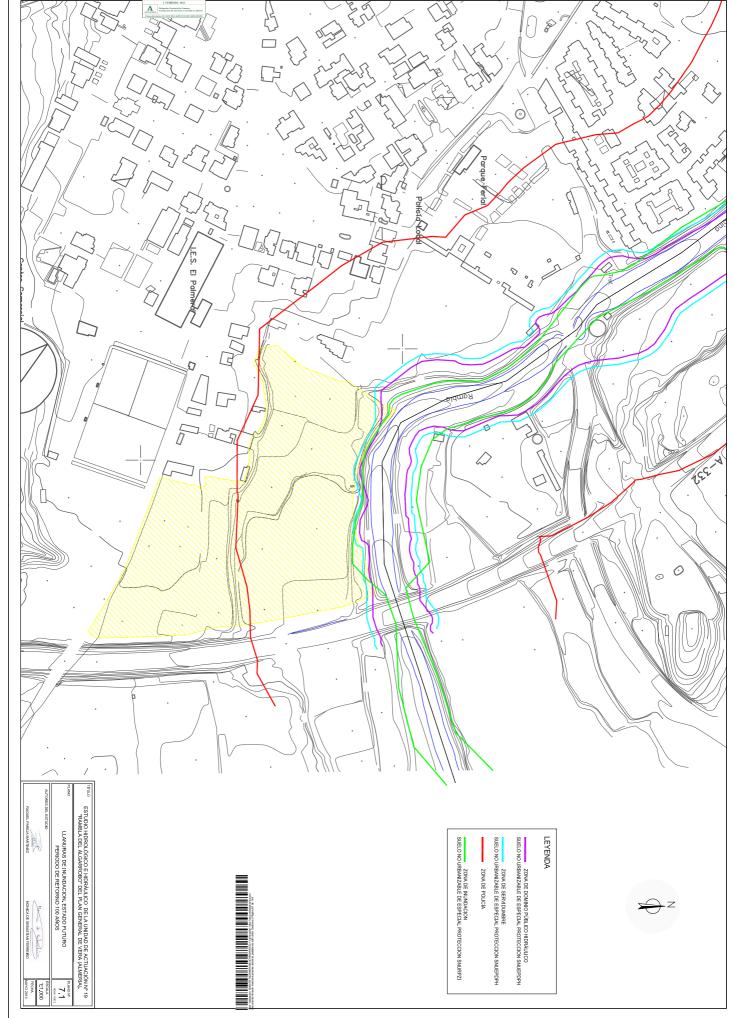

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 89/143
VERIFICACIÓN	Pk2imQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.iuntadeandalucia.es/vei	rificarFirma

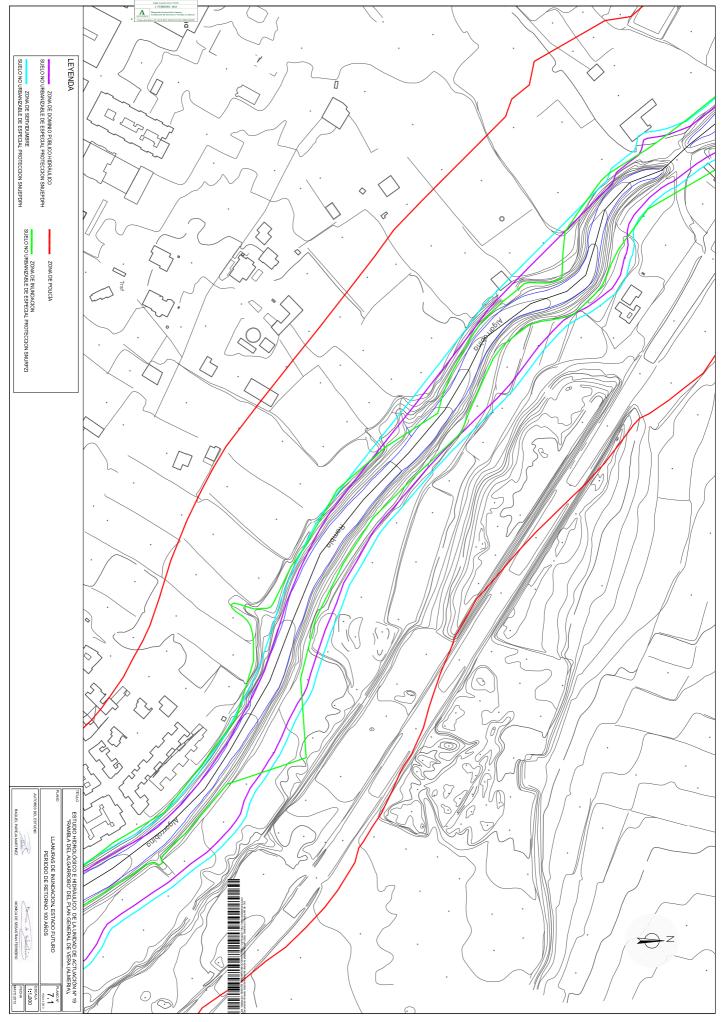

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 90/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		rificarFirma

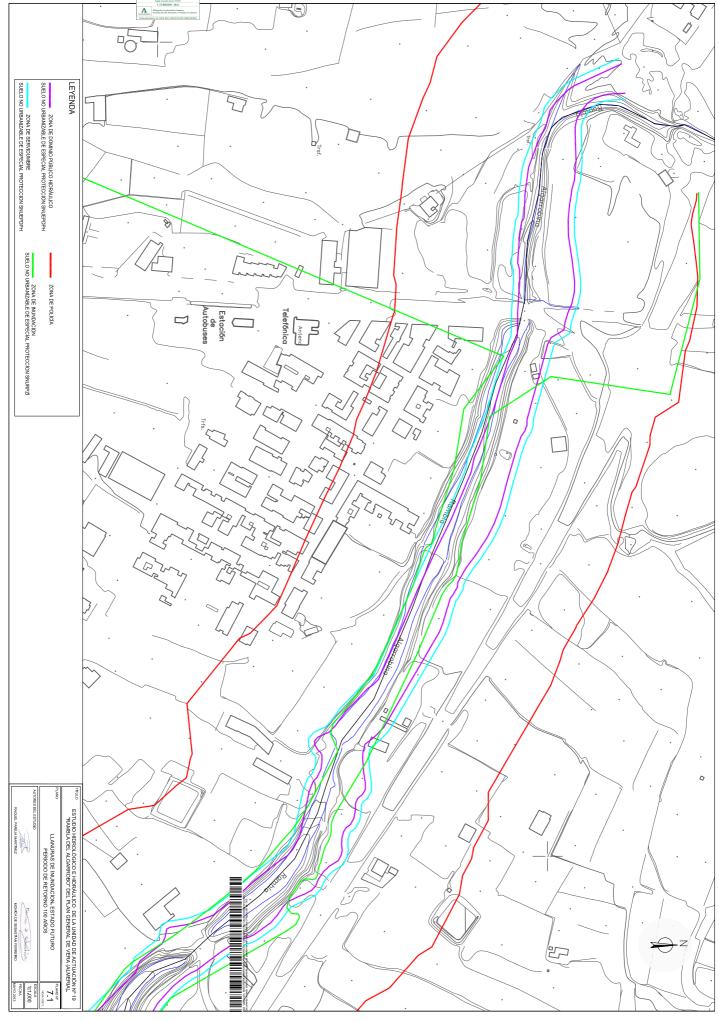

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 91/143
VERIFICACIÓN	Pk2imQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.iuntadeandalucia.es/vei	rificarFirma

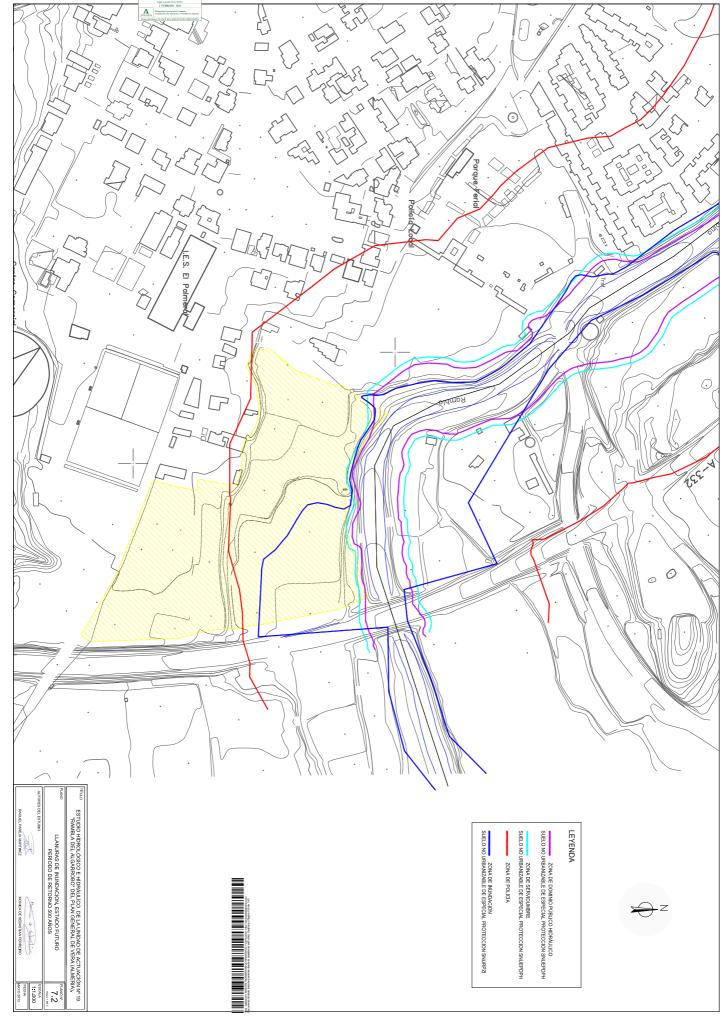

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 92/143
VERIFICACIÓN	Pk2imQX73I GEECZA8DRTVB2KI A.IMKH	https://ws0	50 iuntadeandalucia es/ver	rificarFirma


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 93/143
VERIFICACIÓN	Pk2imQX73LGEECZA8DRT\/B2KLAJMKH	https://ws0	50 iuntadeandalucia es/vei	rificarFirma

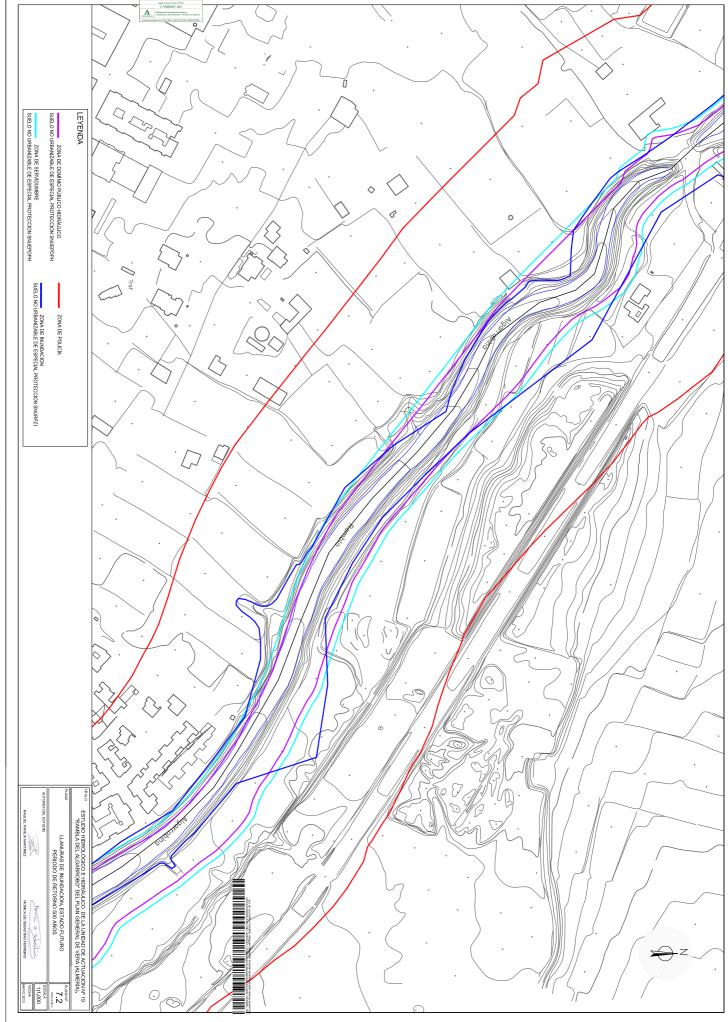

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 94/143
VERIFICACIÓN	Pk2imQX73I GFFCZA8DRTVB2KI AJMKH	https://ws0	50 iuntadeandalucia es/vei	rificarFirma


FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 95/143
VERIFICACIÓN	Pk2imQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.iuntadeandalucia.es/vei	rificarFirma

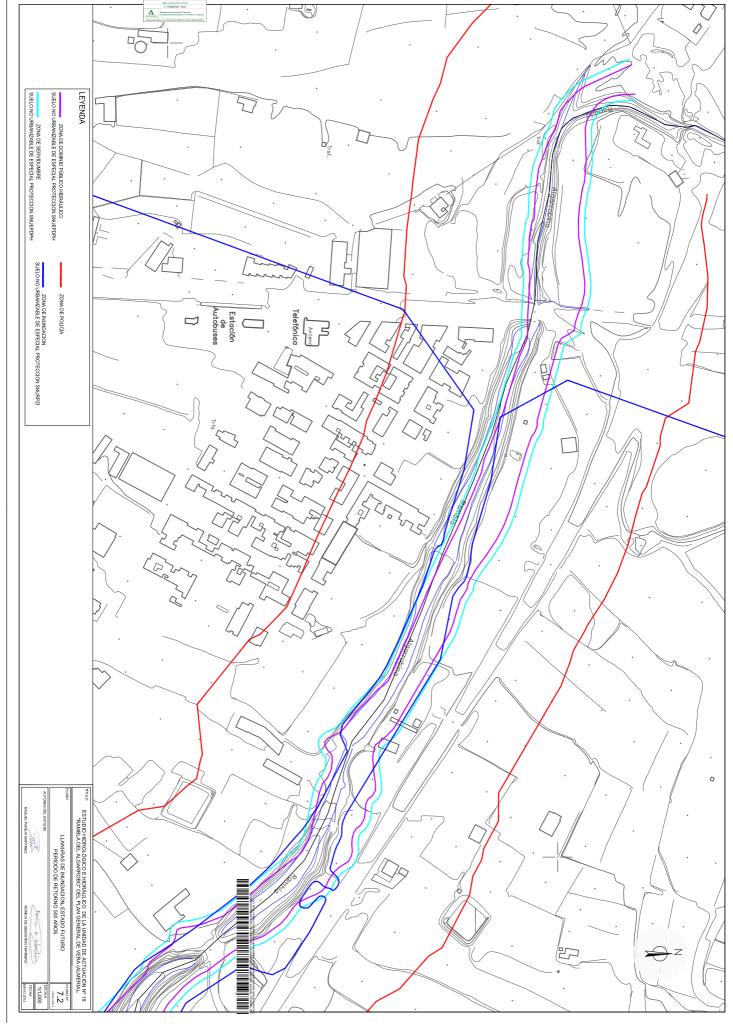

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 96/143
VERIFICACIÓN	Pk2imQX73LGEECZA8DRT\/B2KLAJMKH	https://ws0	50 iuntadeandalucia es/vei	rificarFirma


<u>'</u>				
FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 97/143
VERIFICACIÓN	Pk2imQX73I GFFCZA8DRTVB2KI A.IMKH	https://ws0	50 iuntadeandalucia es/vei	rificarFirma

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ	03/02/2023	PÁGINA 98/143
VERIFICACIÓN	Pk2imOX73I GEECZA8DRTVR2KI AJMKH	50 juntadeandalucia es/vei	rificarFirma



FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 99/143
VERIFICACIÓN	Pk2imQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.iuntadeandalucia.es/vei	rificarFirma



FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 100/143
VERIFICACIÓN	Pk2imQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0		rificarFirma

<u>'</u>				
FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 101/143
VERIFICACIÓN	Pk2imQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.iuntadeandalucia.es/vei	ificarFirma

FIRMADO POR	O POR FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 102/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	50.juntadeandalucia.es/ve	rificarFirma

Es copia auténtica de documento electrónico

APÉNDICE 8: REPORTAJE FOTOGRÁFICO

ESTUDIO HIDROLÓGICO E HIDRÁULICO DE LA UNIDAD DE ACTUACIÓN Nº 19 "RAMBLA DEL ALGARROBO" DEL PLAN GENERAL DE VERA (ALMERIA).

FOTO Nº1: Vista de Obra de Paso en Carretera de las cuevas. Marco de Hormigón de 3.00x2.50 m2.

Carretera de las cuevas.

APROBADO DEFINITIVAMENTE

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 104/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		rificarFirma

FOTO N°3: Vista de la Rambla del Algarrobo aguas arriba de la Carretera de las Cuevas. Vegetación en cauce.

FOTO N°4: Vista de colector 1500 mm vierte a la Rambla del Algarrobo

APROBADO DEFINITIVAMENTE

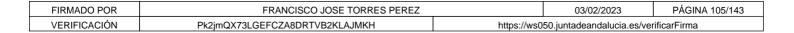


FOTO N°5:Vegetación en cauce de Rambla del Algarrobo aguas arriba de Ctra. Las Cuevas

FOTO N°6: Vista vertido colectores a la Rambla del Algarrobo aguas arriba de Ctra. Las Cuevas

APROBADO DEFINITIVAMENTE

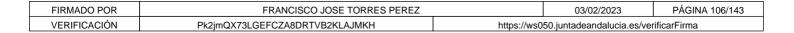


FOTO N°7: Vista de Rambla del Algarrobo aguas debajo de la Ctra. Las Cuevas hacia aguas arriba

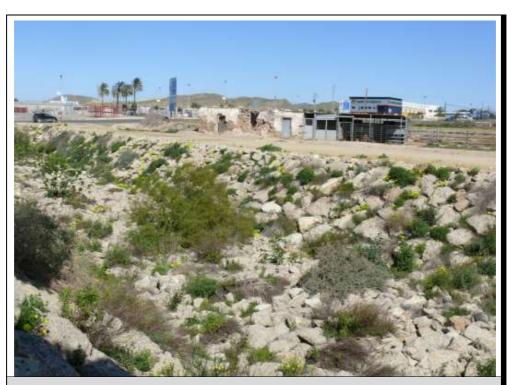


FOTO N°8: Rambla del Algarrobo con solera y taludes de escollera. Sección trapecio de 15 m base y 3 m alto, talud 1/1.

APROBADO DEFINITIVAMENTE

FOTO N°9: Vista de colector en cauce bajo de diámetro 1500 mm

FOTO N°10: Vista de Rambla Albarrobo, con estructura en cauce. Vegetación existente

APROBADO DEFINITIVAMENTE

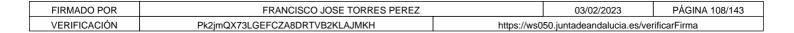


FOTO N°11: Vista de Rambla del algarrobo en tierras hacia aguas abajo, taludes irregulares 3/2, vista rampa acceso.

FOTO N°12: Estructura en cauce con 7 pasos, 5 de los cuales tienen sección similar circular de 1500 mm y resto inferior.

APROBADO DEFINITIVAMENTE

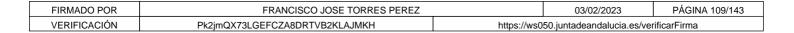


FOTO N°13: Vista rambla hacia aguas abajo terraza en margen izquierdo 1 m a cota inferior-viviendas

FOTO N°14: Vista cauce en tierras hacia aguas arriba. Sección trapecio de base 15 m y altura 3 m con talud 3/2

APROBADO DEFINITIVAMENTE

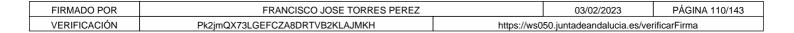


FOTO N°15: Vista cauce en tierras hacia aguas abajo. Sección trapecio de base 15 m y altura 3 m con talud 3/2

FOTO N°16: Vista desde el cauce hacia aguas arriba, solera en tierras y talud vegetal, con arbolado en solera.

APROBADO DEFINITIVAMENTE

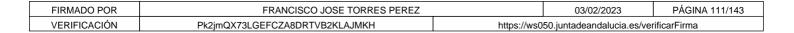


FOTO N°18: Vista edificación junto talud de cauce en margen izquierdo

REPORTAJE FOTOGRÁFICO

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 112/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		

FOTO N°19: Vista talud vegetal en margen derecho hacia aguas arriba

FOTO N°20: Vista de la Rambla del Algarrobo hacia aguas abajo, vegetación existente

APROBADO DEFINITIVAMENTE

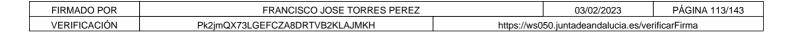


FOTO N°21: Vista de rampa de acceso al cauce.

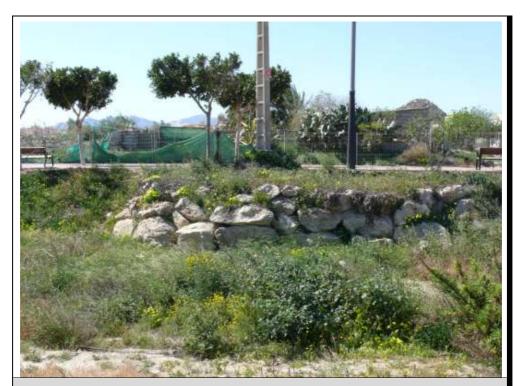
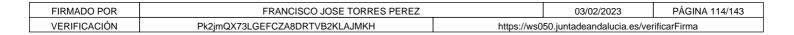


FOTO N°22: Muros jardinera en escollera, existentes en el cauce

APROBADO DEFINITIVAMENTE



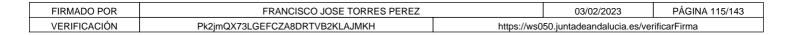

FOTO N°23: Obra de paso de la carretera ALP116 de diámetro 1500 mm y vertido a la Rambla del Algarrobo.

FOTO N°24: Vista de la ALP116 desde el margen opuesto del cauce, encima del talud. Altura cauce 3 m y talud cauce 3/2

REPORTAJE FOTOGRÁFICO

APROBADO DEFINITIVAMENTE

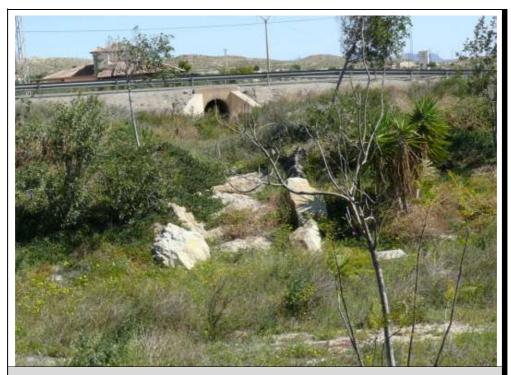


FOTO N°25: Vista de obra de paso de Carretera hacia la Rambla del Algarrobo, taludes cauce 3/2 y 1/1

FOTO N°26: Vista de obra de paso bajo vial sobre el cauce con tres colectores de PVC y 2.000 mm de diámetro.

APROBADO DEFINITIVAMENTE

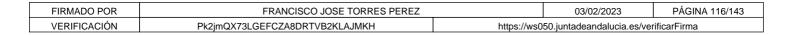


FOTO N°27: Vista de Rambla hacia aguas arriba en tierras

FOTO N°28: Vista de Rambla hacia aguas arriba

APROBADO DEFINITIVAMENTE

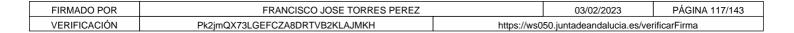


FOTO N°29: Vista Rambla hacia aguas abajo

FOTO N°30: Vista de rampa de acceso al cauce

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 118/143	
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws0	https://ws050.juntadeandalucia.es/verificarFirma		

FOTO N°31: Vista estructura sobre cauce en cruce viario

FOTO N°32: Vista bajante al cauce en escollera

APROBADO DEFINITIVAMENTE

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 119/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		

FOTO N°33: Vista del margen izquierdo del cauce con rampa y bajante

FOTO N°34: Vista de obra de paso en cauce con tres tubos de PVC de 2.000 mm de diámetro recubiertos de escollera

APROBADO DEFINITIVAMENTE

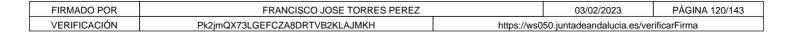


FOTO N°35: Vista de Rambla hacia aguas abajo desde estructura.

FOTO N°36: Vista del paseo y cauce. Rampa acceso al cauce y vegetación existente.

APROBADO DEFINITIVAMENTE

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 121/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		

FOTO N°37: Vista de talud tendido en margen derecha con vegetación, hacia aguas abajo

FOTO N°38: Vista del paseo paralelo al cauce y la carretera por encima con gran desnivel

APROBADO DEFINITIVAMENTE

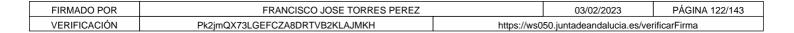


FOTO N°40: Vista de talud de Carretera desde el paseo.

FOTO N°41: Vista del cauce hacia aguas abajo desde el margen izquierda, arbolado existente.

FOTO N°42: Rampas de acceso al cauce.

APROBADO DEFINITIVAMENTE

FIRMADO POR	FRANCISCO JOSE TORRES PEREZ		03/02/2023	PÁGINA 124/143
VERIFICACIÓN	Pk2jmQX73LGEFCZA8DRTVB2KLAJMKH	https://ws050.juntadeandalucia.es/verificarFirma		

FOTO N°44: Vista desde solera del cauce del talud izquierdo. Cambio de talud y altua de cauce.

FOTO N°45: Vista del cauce hacia aguas abajo

FOTO N°46: Vista del paseo paralelo al cauce en el margen izquierdo con terraza entre cauce y carretera

APROBADO DEFINITIVAMENTE

FOTO N°47: Vista de la terraza por encima del cauce y pie talud de la carretera en el margen Izquierdo.

FOTO N°48: Obra de paso de vial sobre el cauce compuesta por tres tubos de PVC de 2.000 mm de diámetro.

REPORTAJE FOTOGRÁFICO

APROBADO DEFINITIVAMENTE

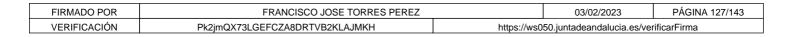


FOTO N°49: Talud del margen derecho del cauce en escollera en proximidad cruce vial sobre cauce

FOTO N°50: Obra de paso del vial sobre el cauce y vegetación taludes.

APROBADO DEFINITIVAMENTE

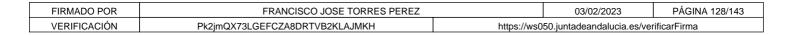


FOTO N°51: Trapa de colector el solera del cauce

FOTO N°52: Vista del cauce hacia aguas arriba desde el vial sobre el cauce. Arbolado existente en márgenes y taludes

REPORTAJE FOTOGRÁFICO

APROBADO DEFINITIVAMENTE



FOTO N°53: Vista del cauce hacia aguas abajo desde el vial sobre el cauce. Arbolado existente en márgenes y taludes

FOTO N°54: Detalle de talud de escollera en margen derecha hacia aguas abajo

REPORTAJE FOTOGRÁFICO

APROBADO DEFINITIVAMENTE

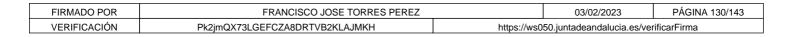


FOTO N°55: Vista de Balsa existente en el paseo paralelo al cauce en margen izquierda

FOTO N°56: Vista de Balsa existente en el paseo paralelo al cauce en margen izquierda

REPORTAJE FOTOGRÁFICO

APROBADO DEFINITIVAMENTE

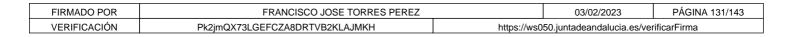


FOTO N°57: Vista de obra de paso hacia aguas arriba

FOTO N°58: Vista desde rampa acceso al cauce en margen izquierda, del cauce aguas abajo

APROBADO DEFINITIVAMENTE

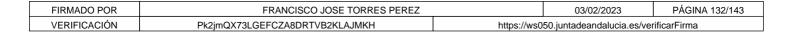


FOTO N°59: Solera hacia aguas abajo. Edificación existente en solera y viario que cruza cauce a nivel solera.

FOTO N°60: Vista de talud existente en margen derecha.

REPORTAJE FOTOGRÁFICO

APROBADO DEFINITIVAMENTE

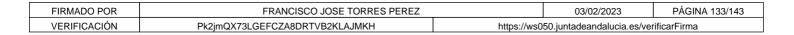


FOTO N°61: Talud existente en margen derecha del cauce, frente al talud escellera.

FOTO N°62: Vista de Talud escollera y viario con desnivel hacia aguas abajo. Vial acaba a cota solera del cauce

APROBADO DEFINITIVAMENTE

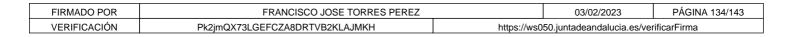


FOTO N°63: Vista de edificación existente en solera cauce y viario a cota solera cauce.

FOTO N°64: Cauce con cañas y suciedad visto desde viario a cota de solera del cauce, aflora el colector de 1500 mm.

REPORTAJE FOTOGRÁFICO

APROBADO DEFINITIVAMENTE

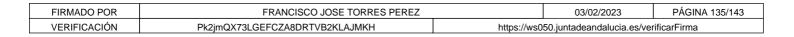


FOTO N°65: Vista de la Rambla, aguas abajo del cruce con Camino de la Ribina, hacia aguas arriba. Cañas existentes

FOTO Nº66: Vista de la Rambla, aguas abajo del cruce con Camino de la Ribina, hacia aguas abajo

APROBADO DEFINITIVAMENTE

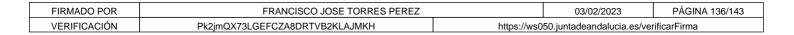


FOTO N°67: Vegetación existente en cauce aguas abajo del Camino de la Ribina

FOTO N°68: Vista de edificación en margen izquierda del cauce y carretera al fondo

APROBADO DEFINITIVAMENTE

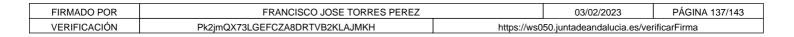


FOTO N°69: Vista de edificación y camino paralelo al cauce en margen izquierda.

FOTO N°70: Vista de la carretera desde suelo de Unidad 19

REPORTAJE FOTOGRÁFICO

APROBADO DEFINITIVAMENTE

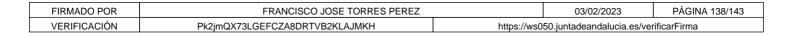


FOTO N°71: Vista desde margen izquierda de edificación en margen derecha colindante a la UA n° 19.

FOTO N°72: Vista desde margen izquierda de cauce y terrenos de UA 19 y edificación colindante

REPORTAJE FOTOGRÁFICO

APROBADO DEFINITIVAMENTE

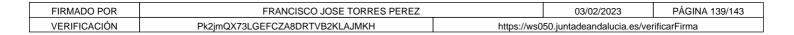


FOTO N°73: Vista del cauce aguas abajo Camino de la Ribina hacia aguas arriba, desde margen izquierda.

FOTO N°74: Vista de margen derecha del cauce desde margen izquierda, aguas abajo Camino de la Ribina

APROBADO DEFINITIVAMENTE

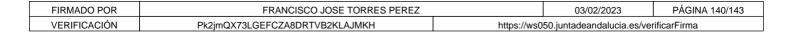


FOTO N°75: Vista desde el cauce de edificación y terrenos de la UA n° 19 con diferencia de cota de 5-6 m.

FOTO N°76: Rambla del Algarrobo con vegetación existente y muro en el límite del margen derecha.

REPORTAJE FOTOGRÁFICO

APROBADO DEFINITIVAMENTE

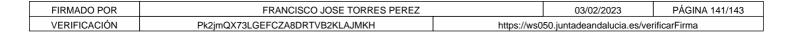
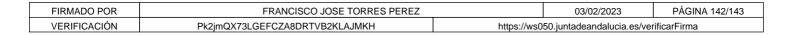
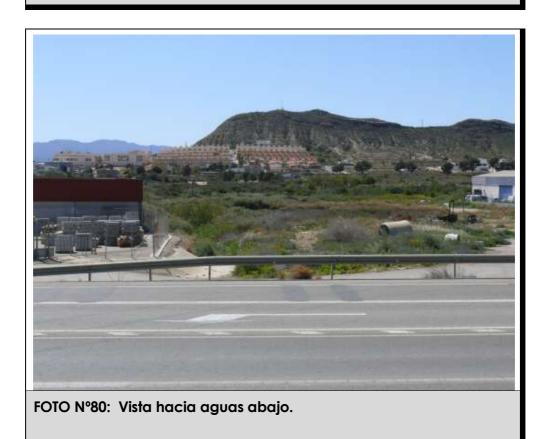


FOTO N°77: Obra de paso bajo la ALP 116 desde aguas arriba

FOTO N°78: Vista de ALP 116 y vía servicio junto a obra de paso hacia el Oeste

APROBADO DEFINITIVAMENTE

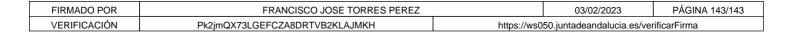


FOTO N°79: Vista de ALP 116 y vía servicio junto a obra de paso hacia el Oeste

REPORTAJE FOTOGRÁFICO

APROBADO DEFINITIVAMENTE

